Skip to main content
Open In ColabOpen on GitHub

UpstageEmbeddings

This notebook covers how to get started with Upstage embedding models.

Installationโ€‹

Install langchain-upstage package.

pip install -U langchain-upstage

Environment Setupโ€‹

Make sure to set the following environment variables:

import os

os.environ["UPSTAGE_API_KEY"] = "YOUR_API_KEY"

Usageโ€‹

Initialize UpstageEmbeddings class.

from langchain_upstage import UpstageEmbeddings

embeddings = UpstageEmbeddings(model="solar-embedding-1-large")
API Reference:UpstageEmbeddings

Use embed_documents to embed list of texts or documents.

doc_result = embeddings.embed_documents(
["Sung is a professor.", "This is another document"]
)
print(doc_result)

Use embed_query to embed query string.

query_result = embeddings.embed_query("What does Sung do?")
print(query_result)

Use aembed_documents and aembed_query for async operations.

# async embed query
await embeddings.aembed_query("My query to look up")
# async embed documents
await embeddings.aembed_documents(
["This is a content of the document", "This is another document"]
)

Using with vector storeโ€‹

You can use UpstageEmbeddings with vector store component. The following demonstrates a simple example.

from langchain_community.vectorstores import DocArrayInMemorySearch

vectorstore = DocArrayInMemorySearch.from_texts(
["harrison worked at kensho", "bears like to eat honey"],
embedding=UpstageEmbeddings(model="solar-embedding-1-large"),
)
retriever = vectorstore.as_retriever()
docs = retriever.invoke("Where did Harrison work?")
print(docs)

Was this page helpful?

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy