Skip to main content
Open In ColabOpen on GitHub

Elasticsearch

Walkthrough of how to generate embeddings using a hosted embedding model in Elasticsearch

The easiest way to instantiate the ElasticsearchEmbeddings class it either

  • using the from_credentials constructor if you are using Elastic Cloud
  • or using the from_es_connection constructor with any Elasticsearch cluster
!pip -q install langchain-elasticsearch
from langchain_elasticsearch import ElasticsearchEmbeddings
# Define the model ID
model_id = "your_model_id"

Testing with from_credentialsโ€‹

This required an Elastic Cloud cloud_id

# Instantiate ElasticsearchEmbeddings using credentials
embeddings = ElasticsearchEmbeddings.from_credentials(
model_id,
es_cloud_id="your_cloud_id",
es_user="your_user",
es_password="your_password",
)
# Create embeddings for multiple documents
documents = [
"This is an example document.",
"Another example document to generate embeddings for.",
]
document_embeddings = embeddings.embed_documents(documents)
# Print document embeddings
for i, embedding in enumerate(document_embeddings):
print(f"Embedding for document {i+1}: {embedding}")
# Create an embedding for a single query
query = "This is a single query."
query_embedding = embeddings.embed_query(query)
# Print query embedding
print(f"Embedding for query: {query_embedding}")

Testing with Existing Elasticsearch client connectionโ€‹

This can be used with any Elasticsearch deployment

# Create Elasticsearch connection
from elasticsearch import Elasticsearch

es_connection = Elasticsearch(
hosts=["https://es_cluster_url:port"], basic_auth=("user", "password")
)
# Instantiate ElasticsearchEmbeddings using es_connection
embeddings = ElasticsearchEmbeddings.from_es_connection(
model_id,
es_connection,
)
# Create embeddings for multiple documents
documents = [
"This is an example document.",
"Another example document to generate embeddings for.",
]
document_embeddings = embeddings.embed_documents(documents)
# Print document embeddings
for i, embedding in enumerate(document_embeddings):
print(f"Embedding for document {i+1}: {embedding}")
# Create an embedding for a single query
query = "This is a single query."
query_embedding = embeddings.embed_query(query)
# Print query embedding
print(f"Embedding for query: {query_embedding}")

Was this page helpful?

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy