Přeskočit na obsah

Involuce (matematika)

Z Wikipedie, otevřené encyklopedie

Involuce je v matematice taková funkce, která je sama sobě inverzním zobrazením. Tedy taková funkce , která pro všechna ze svého definičního oboru splňuje . Tato vlastnost zobrazení se nazývá involutornost.

Vlastnosti

[editovat | editovat zdroj]

Každá involuce je nutně vzájemně jednoznačné zobrazení, jedná se tedy o permutaci dané množiny.

Počet možných involucí na konečné množině závisí na její mohutnosti a Heinrich August Rothe odhalil v roce 1800 rekurentní vztah, který udává počet možných involucí n-prvkové množiny:

pro

Pro jsou počáteční hodnoty této posloupnosti 1, 1, 2, 4, 10, 26, 76, 232. V rámci encyklopedie celočíselných posloupností má tato posloupnost označení A000085.[1]

Příklady

[editovat | editovat zdroj]

Řada jednoduchých a důležitých příkladů involucí je v geometrii, jedná se například o osovou souměrnost nebo středovou souměrnost nebo rotace of 180°. Obecně involutorní shodnost ve vícerozměrných eukleidovských prostorech je souměrnost podle podprostoru. Involucí je také kruhová inverze.

V aritmetice (respektive obecněji v algebře) je involucí zobrazení na inverzní prvek, tedy v případě sčítání zobrazení přiřazující číslu opačné číslo, v případě násobení (ovšemže pouze pro invertibilní prvky) převrácená hodnota.

Pro komplexní čísla je příkladem involuce operace (komplexního) sdružení.

Pro množiny matic je involuce transpozice a hermitovská transpozice. Matice, která je hermitovská a zároveň unitární reprezentuje involutivní lineární zobrazení.

Jednoduchými příklady z informatiky jsou „šifra“ ROT13 a bitová operace exkluzivní disjunkce s konstantou.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy