Mükemmel sayı
Mükemmel sayı, sayılar teorisinde, kendisi hariç pozitif tam bölenlerinin toplamı kendisine eşit olan sayı. Diğer bir ifadeyle, bir mükemmel sayı, bütün pozitif tam bölenlerinin toplamının yarısına eşittir.[1]
Çift mükemmel sayılar
[değiştir | kaynağı değiştir]Euclid ilk dört mükemmel sayı üstünde yaptığı araştırmalarda p ve 2p−1 sayıları asal sayı olmak koşuluyla şöyle bir formül ile tanımlanabildiklerini keşfetmiştir: 2p−1(2p−1). Buna göre ilk dört mükemmel sayı şu şekilde hesaplanabilir:
- p = 2: 21(22−1) = 6
- p = 3: 22(23−1) = 28
- p = 5: 24(25−1) = 496
- p = 7: 26(27−1) = 8128.
2p−1(2p−1) formülüne göre, ilk 40 çift mükemmel sayıyı hesaplamak için p değişkeninin değeri şunlardan biri olabilir:
- p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609.
Bu sayılar arasında başka mükemmel sayılar (çift veya tek) olup olmadığı bilinmemektedir.
Tek mükemmel sayılar
[değiştir | kaynağı değiştir]Tek mükemmel sayıların varlığı veya yokluğu tam olarak kanıtlanamamıştır. Ama hiç olmadıkları veya olabildiğince az oldukları düşünülmektedir.
Diğer özellikler
[değiştir | kaynağı değiştir]- Bu sayılar ve 1 hariç diğer çarpanları 1/a şeklinde yazılarak toplanırsa sonuç 1 olur. 1/a + 1/b + 1/c =1 denkleminde a=2,b=3 ve c=6 olmalıdır. 1/a + 1/b + 1/c + 1/d + 1/e =1 denkleminde de a=2,b=4,c=7,d=14 ve e=28 olmalıdır.
Kaynakça
[değiştir | kaynağı değiştir]- ^ Matematikçi Portreleri. Ali Nesin, Ali Törün. Nesin Yayıncılık. 2019. s. 92. 12 Ocak 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 10 Ocak 2021.
- Euclid, Elements, Kitap IX, Öneri 36. Önerinin İngilizce çevirisi ve öneri ile ilgili tartışma için: D.E. Joyce's website2 Mart 2011 tarihinde Wayback Machine sitesinde arşivlendi..
Matematik ile ilgili bu madde taslak seviyesindedir. Madde içeriğini genişleterek Vikipedi'ye katkı sağlayabilirsiniz. |