Jump to content

Multivariable calculus

From Simple English Wikipedia, the free encyclopedia

In calculus, multivariable calculus or multivariate calculus is the extension of regular, one-dimensional calculus to more than one dimension. Most of the concepts from calculus, such as continuity and chain rule, still work in more than one dimension, though sometimes with greater complexity and counter-intuitive result.

Special multivariable uses include partial derivatives, or differentiation with only one dimension at a time, and multiple integration, or integrating over more than one dimension. The gradient operator , defined in terms of partial derivatives, is used to define higher concepts such as Laplace operator, divergence and curl. By integrating a multivariable function over several variables, one can define an integral over an area, surface or volume as well.[1][2]

[change | change source]

References

[change | change source]
  1. "List of Calculus and Analysis Symbols". Math Vault. 2020-05-11. Retrieved 2020-09-17.
  2. Weisstein, Eric W. "Multiple Integral". mathworld.wolfram.com. Retrieved 2020-09-17.


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy