Saltar para o conteúdo

Parte inteira

Origem: Wikipédia, a enciclopédia livre.
Função chão
Função teto

Em matemática, a função piso, denotada por , converte um número real no maior número inteiro menor ou igual a , enquanto a função teto, denotada por , converte um número real no menor número inteiro maior ou igual a .[1] As definições formais para essas função são

,
.

O conceito de parte inteira ou valor inteiro de um número é definido de duas maneiras por diferentes autores[2]. Para Graham et al.[3], a parte inteira de é o mesmo que . Para Spanier e Oldham, a parte inteira de é igual a para positivo e igual a para negativo. A segunda definição será representada neste artigo como .

O mesmo acontece para parte fracionária ou valor fracionário. Para Graham et al., a parte fracionária de é igual a . Para Spanier e Oldham, a parte fracionária de é igual a . A segunda definição será representada neste artigo como .

Tanto os nomes floor e ceiling (piso e teto em inglês) como as notações e foram introduzidos por Kenneth E. Iverson em 1962[1].

A parte inteira de um número fracionário () é dada por:

Propriedades da função piso

[editar | editar código-fonte]
  • Tem-se
com igualdade à esquerda se e só se x for inteiro.
  • a função piso é idempotente: .
  • Para qualquer inteiro k e real x,
  • O habitual arredondamento de x ao inteiro mais próximo expressa-se como .
  • A função piso não é contínua, mas semi-contínua. É linear por troços e a sua derivada é zero onde existe, ou seja, em todos os não inteiros.
  • Se x for um real e n um inteiro, então nx se e só se n ≤ piso(x). A função piso é parte de uma correspondência de Galois; é o adjunto superior da função que aplica os inteiros nos reais.
  • Para os reais não inteiros, a função piso tem uma representação de série de Fourier
  • Se m e n são inteiros positivos coprimos, então
  • É fácil ver que:
  • e:
  • É possível verificar que:

Referências

  1. a b Graham et al., p. 67
  2. MathWorld, Integer Part
  3. Graham et al., p. 70
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy