Skip to main content
Log in

Hydropower impacts on riverine biodiversity

  • Review Article
  • Published:

From Nature Reviews Earth & Environment

View current issue Sign up to alerts

Abstract

Hydropower is a rapidly developing and globally important source of renewable electricity. Globally, over 60% of rivers longer than 500 km are already fragmented and thousands of dams are proposed on rivers in biodiversity hotspots. In this Review, we discuss the impacts of hydropower on aquatic and semi-aquatic species in riverine ecosystems and how these impacts accumulate spatially and temporally across basins. Dams act as physical barriers that disrupt longitudinal connectivity and upstream–downstream movement of species. Impoundment creates still-water habitats upstream of dams and leads to declines in lotic-adapted species. Intermittent water releases modify the natural flow, sediment and thermal regimes in downstream channels, altering water quality, substrate structure and environmental cues that are vital for species to complete their life cycles, resulting in reduced reproduction success. Moreover, retention effects of reservoirs and flow regulation alter river–floodplain exchanges of water, sediment and nutrients, modifying the habitats on which riverine species depend. Improvements to flow regulation, fishway design and sediment redistribution can mitigate these ecological impacts. Future research should support reforms to dam operations and design adaptations to balance renewable electricity development and biodiversity conservation through systematic basin-scale planning, long-term monitoring, adaptive management and involving multiple actors in decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Impacts of hydropower plants on river connectivity and riverine species.
Fig. 2: Impacts of a large hydropower plant on the river section upstream of the dam.
Fig. 3: Downstream impacts of hydropower plants on riverine species.
Fig. 4: Cumulative impacts of hydropower plants on river connectivity and sediment flux.

Similar content being viewed by others

References

  1. Moran, E. F., Lopez, M. C., Moore, N., Müller, N. & Hyndman, D. W. Sustainable hydropower in the 21st century. Proc. Natl Acad. Sci. USA 115, 11891–11898 (2018).

    Article  CAS  Google Scholar 

  2. Couto, T. B. & Olden, J. D. Global proliferation of small hydropower plants — science and policy. Front. Ecol. Environ. 16, 91–100 (2018).

    Article  Google Scholar 

  3. International Energy Agency. Renewables 2022: analysis and forecast to 2027 (IEA, 2023).

  4. Hermoso, V. Freshwater ecosystems could become the biggest losers of the Paris Agreement. Glob. Change Biol. 23, 3433–3436 (2017).

    Article  Google Scholar 

  5. Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).

    Article  Google Scholar 

  6. Xu, R. et al. A global-scale framework for hydropower development incorporating strict environmental constraints. Nat. Water 1, 113–122 (2023).

    Article  Google Scholar 

  7. Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    Article  CAS  Google Scholar 

  8. Kuriqi, A., Pinheiro, A. N., Sordo-Ward, A., Bejarano, M. D. & Garrote, L. Ecological impacts of run-of-river hydropower plants — current status and future prospects on the brink of energy transition. Renew. Sustain. Energy Rev. 142, 110833 (2021).

    Article  Google Scholar 

  9. Radinger, J., van Treeck, R. & Wolter, C. Evident but context-dependent mortality of fish passing hydroelectric turbines. Conserv. Biol. 36, e13870 (2022).

    Article  Google Scholar 

  10. Bejarano, M. D., Jansson, R. & Nilsson, C. The effects of hydropeaking on riverine plants: a review. Biol. Rev. 93, 658–673 (2018).

    Article  Google Scholar 

  11. Bipa, N. J., Stradiotti, G., Righetti, M. & Pisaturo, G. R. Impacts of hydropeaking: a systematic review. Sci. Total Environ. 912, 169251 (2024).

    Article  CAS  Google Scholar 

  12. Hauer, C. et al. State of the art, shortcomings and future challenges for a sustainable sediment management in hydropower: a review. Renew. Sustain. Energy Rev. 98, 40–55 (2018).

    Article  Google Scholar 

  13. Dethier, E. N., Renshaw, C. E. & Magilligan, F. J. Rapid changes to global river suspended sediment flux by humans. Science 376, 1447–1452 (2022).

    Article  CAS  Google Scholar 

  14. Chalise, D. R., Sankarasubramanian, A., Olden, J. D. & Ruhi, A. Spectral signatures of flow regime alteration by dams across the United States. Earths Future 11, e2022EF003078 (2023).

    Article  Google Scholar 

  15. Olden, J. D. & Naiman, R. J. Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshw. Biol. 55, 86–107 (2010).

    Article  Google Scholar 

  16. Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    Article  CAS  Google Scholar 

  17. Maavara, T. et al. River dam impacts on biogeochemical cycling. Nat. Rev. Earth Environ. 1, 103–116 (2020).

    Article  Google Scholar 

  18. Eriyagama, N., Smakhtin, V. & Udamulla, L. How much artificial surface storage is acceptable in a river basin and where should it be located: a review. Earth Sci. Rev. 208, 103294 (2020).

    Article  Google Scholar 

  19. Vörösmarty, C. J. et al. Anthropogenic sediment retention: major global impact from registered river impoundments. Glob. Planet. Change 39, 169–190 (2003).

    Article  Google Scholar 

  20. Wu, H. et al. Effects of dam construction on biodiversity: a review. J. Clean. Prod. 221, 480–489 (2019).

    Article  Google Scholar 

  21. He, F. et al. The global decline of freshwater megafauna. Glob. Change Biol. 25, 3883–3892 (2019).

    Article  Google Scholar 

  22. Deinet, S. et al. The Living Planet Index (LPI) for Migratory Freshwater Fish 2024 Update: Technical Report (World Fish Migration Foundation, 2024).

  23. Lange, K. et al. Basin-scale effects of small hydropower on biodiversity dynamics. Front. Ecol. Environ. 16, 397–404 (2018).

    Article  Google Scholar 

  24. Abell, R., Lehner, B., Thieme, M. & Linke, S. Looking beyond the fenceline: assessing protection gaps for the world’s rivers. Conserv. Lett. 10, 384–394 (2017).

    Article  Google Scholar 

  25. Flitcroft, R. L., Abell, R., Harrison, I., Arismendi, I. & Penaluna, B. E. Making global targets local for freshwater protection. Nat. Sustain. 6, 1499–1502 (2023).

    Article  Google Scholar 

  26. Freeman, M. C., Pringle, C. M., Greathouse, E. A. & Freeman, B. J. Ecosystem-level consequences of migratory faunal depletion caused by dams. In Biodiversity, Status, and Conservation of the World’s Shads 255–266 (American Fisheries Society, 2003).

  27. Gibeau, P., Connors, B. M. & Palen, W. J. Run-of-river hydropower and salmonids: potential effects and perspective on future research. Can. J. Fish. Aquat. Sci. 74, 1135–1149 (2017).

    Article  Google Scholar 

  28. Bárcenas-García, A. et al. Impacts of dams on freshwater turtles: a global review to identify conservation solutions. Trop. Conserv. Sci. 15, 1–21 (2022).

    Article  Google Scholar 

  29. New, T. & Xie, Z. Impacts of large dams on riparian vegetation: applying global experience to the case of China’s Three Gorges Dam. Biodivers. Conserv. 17, 3149–3163 (2008).

    Article  Google Scholar 

  30. Chen, Q. et al. River damming impacts on fish habitat and associated conservation measures. Rev. Geophys. 61, e2023RG000819 (2023).

    Article  Google Scholar 

  31. Arantes, C. C., Fitzgerald, D. B., Hoeinghaus, D. J. & Winemiller, K. O. Impacts of hydroelectric dams on fishes and fisheries in tropical rivers through the lens of functional traits. Curr. Opin. Environ. Sustain. 37, 28–40 (2019).

    Article  Google Scholar 

  32. Heggenes, J. et al. Hydropower-driven thermal changes, biological responses and mitigating measures in northern river systems. River Res. Appl. 37, 743–765 (2021).

    Article  Google Scholar 

  33. Zhang, H. Ecological effects of the first dam on Yangtze main stream and future conservation recommendations: a review of the past 60 years. Appl. Ecol. Environ. Res. 15, 2081–2097 (2017).

    Article  Google Scholar 

  34. Xu, X., Tan, Y. & Yang, G. Environmental impact assessments of the Three Gorges Project in China: issues and interventions. Earth Sci. Rev. 124, 115–125 (2013).

    Article  Google Scholar 

  35. Pelicice, F. M., Pompeu, P. S. & Agostinho, A. A. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish Fish. 16, 697–715 (2015).

    Article  Google Scholar 

  36. Wohl, E. Connectivity in rivers. Prog. Phys. Geogr. Earth Environ. 41, 345–362 (2017).

    Article  Google Scholar 

  37. Ward, J. V., Tockner, K. & Schiemer, F. Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regul. Rivers Res. Manag. 15, 125–139 (1999).

    Article  Google Scholar 

  38. Palmer, M. & Ruhi, A. Linkages between flow regime, biota, and ecosystem processes: implications for river restoration. Science 365, eaaw2087 (2019).

    Article  CAS  Google Scholar 

  39. Song, Y. Hydrodynamic impacts on algal blooms in reservoirs and bloom mitigation using reservoir operation strategies: a review. J. Hydrol. 620, 129375 (2023).

    Article  CAS  Google Scholar 

  40. Li, J. et al. Effects of cascading hydropower dams on the composition, biomass and biological integrity of phytoplankton assemblages in the middle Lancang-Mekong River. Ecol. Eng. 60, 316–324 (2013).

    Article  Google Scholar 

  41. Zhang, J. et al. Characteristics of spring algal blooms under different impounded levels in tributaries of the Three Gorges Reservoir. Acta Hydrobiol. Sin. 43, 884–891 (2019).

    Google Scholar 

  42. McLachlan, A. J. Development of some lake ecosystems in tropical Africa, with special reference to the invertebrates. Biol. Rev. 49, 365–397 (1974).

    Article  Google Scholar 

  43. Pringle, C. M., Freeman, M. C. & Freeman, B. J. Regional effects of hydrologic alterations on riverine macrobiota in the new world: tropical-temperate comparisons. BioScience 50, 807–823 (2000).

    Article  Google Scholar 

  44. Havel, J. E. et al. Effect of main-stem dams on zooplankton communities of the Missouri River (USA). Hydrobiologia 628, 121–135 (2009).

    Article  Google Scholar 

  45. Picapedra, P. H., dos, S., Fernandes, C., Baumgartner, G. & Sanches, P. V. Responses of the zooplankton community to the formation of a small reservoir on the Caveiras River, southern Brazil. Acta Sci. Biol. Sci. 43, e56924–e56924 (2021).

    Article  Google Scholar 

  46. Armitage, P. D. Development of the macro-invertebrate fauna of Cow Green Reservoir (Upper Teesdale) in the first five years of its existence. Freshw. Biol. 7, 441–454 (1977).

    Article  Google Scholar 

  47. Baxter, R. M. Environmental effects of dams and impoundments. Annu. Rev. Ecol. Syst. 8, 255–283 (1977).

    Article  Google Scholar 

  48. Li, B., Cai, Q., Zhang, M. & Shao, M. Macroinvertebrate community succession in the Three-Gorges Reservoir ten years after impoundment. Quat. Int. 380–381, 247–255 (2015).

    Article  Google Scholar 

  49. Loures, R. C. & Pompeu, P. S. Temporal changes in fish diversity in lotic and lentic environments along a reservoir cascade. Freshw. Biol. 64, 1806–1820 (2019).

    Article  Google Scholar 

  50. Ticiani, D., Larentis, C., de Carvalho, D. R., Ribeiro, A. C. & Delariva, R. L. Dam cascade in run-of-river systems promotes homogenisation of fish functional traits in a plateau river. Ecol. Freshw. Fish. 32, 147–165 (2023).

    Article  Google Scholar 

  51. Turgeon, K., Turpin, C. & Gregory-Eaves, I. Dams have varying impacts on fish communities across latitudes: a quantitative synthesis. Ecol. Lett. 22, 1501–1516 (2019).

    Article  Google Scholar 

  52. Chen, M. et al. How do fish functional traits respond to dams at the global scale? Hydrobiologia 850, 1159–1173 (2023).

    Google Scholar 

  53. Liew, J. H., Tan, H. H. & Yeo, D. C. J. Dammed rivers: impoundments facilitate fish invasions. Freshw. Biol. 61, 1421–1429 (2016).

    Article  Google Scholar 

  54. Johnson, P. T., Olden, J. D. & Vander Zanden, M. J. Dam invaders: impoundments facilitate biological invasions into freshwaters. Front. Ecol. Environ. 6, 357–363 (2008).

    Article  Google Scholar 

  55. Orsi, M. L. & Britton, J. R. Long-term changes in the fish assemblage of a neotropical hydroelectric reservoir. J. Fish. Biol. 84, 1964–1970 (2014).

    Article  CAS  Google Scholar 

  56. Benchimol, M. & Peres, C. A. Widespread forest vertebrate extinctions induced by a mega hydroelectric dam in lowland Amazonia. PLoS ONE 10, e0129818 (2015).

    Article  Google Scholar 

  57. Liro, M. Dam reservoir backwater as a field-scale laboratory of human-induced changes in river biogeomorphology: a review focused on gravel-bed rivers. Sci. Total Environ. 651, 2899–2912 (2019).

    Article  CAS  Google Scholar 

  58. Volke, M. A., Johnson, W. C., Dixon, M. D. & Scott, M. L. Emerging reservoir delta-backwaters: biophysical dynamics and riparian biodiversity. Ecol. Monogr. 89, e01363 (2019).

    Article  Google Scholar 

  59. Yang, F., Liu, W.-W., Wang, J., Liao, L. & Wang, Y. Riparian vegetation’s responses to the new hydrological regimes from the Three Gorges Project: clues to revegetation in reservoir water-level-fluctuation zone. Acta Ecol. Sin. 32, 89–98 (2012).

    Article  Google Scholar 

  60. Campos, Z., Muniz, F., Magnusson, W. E. & Mourão, G. Effects of the Belo Monte hydro-electric-dam complex on crocodilians in the Xingu River, Brazilian Amazonia. Amphib. Reptil. 42, 419–426 (2021).

    Article  Google Scholar 

  61. Palmeirim, A. F., Peres, C. A. & Rosas, F. C. W. Giant otter population responses to habitat expansion and degradation induced by a mega hydroelectric dam. Biol. Conserv. 174, 30–38 (2014).

    Article  Google Scholar 

  62. Bárcenas-García, A., Michalski, F., Gibbs, J. P. & Norris, D. Amazonian run-of-river dam reservoir impacts underestimated: evidence from a before–after control–impact study of freshwater turtle nesting areas. Aquat. Conserv. Mar. Freshw. Ecosyst. 32, 508–522 (2022).

    Article  Google Scholar 

  63. Anderson, D., Moggridge, H., Warren, P. & Shucksmith, J. The impacts of ‘run-of-river’ hydropower on the physical and ecological condition of rivers. Water Environ. J. 29, 268–276 (2015).

    Article  Google Scholar 

  64. Mueller, M., Pander, J. & Geist, J. The effects of weirs on structural stream habitat and biological communities. J. Appl. Ecol. 48, 1450–1461 (2011).

    Article  Google Scholar 

  65. Zhou, S. et al. Impacts of cascaded small hydropower plants on microzooplankton in Xiangxi River, China. Acta Ecol. Sin. 29, 62–68 (2009).

    Article  Google Scholar 

  66. Tomczyk, P., Wiatkowski, M. & Gruss Application of macrophytes to the assessment and classification of ecological status above and below the barrage with hydroelectric buildings. Water 11, 1028 (2019).

    Article  Google Scholar 

  67. Fjellheim, A. & Raddum, G. G. Weir building in a regulated west Norwegian river: long-term dynamics of invertebrates and fish. Regul. Rivers Res. Manag. 12, 501–508 (1996).

    Article  Google Scholar 

  68. Braulik, G. T., Noureen, U., Arshad, M. & Reeves, R. R. Review of status, threats, and conservation management options for the endangered Indus River blind dolphin. Biol. Conserv. 192, 30–41 (2015).

    Article  Google Scholar 

  69. Noonan, M. J., Grant, J. W. A. & Jackson, C. D. A quantitative assessment of fish passage efficiency. Fish Fish. 13, 450–464 (2012).

    Article  Google Scholar 

  70. Sun, J. et al. Attraction and passage efficiency for salmonids and non-salmonids based on fishway: a meta-analysis approach. River Res. Appl. 39, 1933–1949 (2023).

    Article  Google Scholar 

  71. Algera, D. A. et al. What are the relative risks of mortality and injury for fish during downstream passage at hydroelectric dams in temperate regions? A systematic review. Environ. Evid. 9, 3 (2020).

    Article  Google Scholar 

  72. Dare, G. C., Murray, R. G., Courcelles, D. M. M., Malt, J. M. & Palen, W. J. Run-of-river dams as a barrier to the movement of a stream-dwelling amphibian. Ecosphere 11, e03207 (2020).

    Article  Google Scholar 

  73. Merritt, D. M. & Wohl, E. E. Plant dispersal along rivers fragmented by dams. River Res. Appl. 22, 1–26 (2006).

    Article  Google Scholar 

  74. Nilsson, C., Brown, R. L., Jansson, R. & Merritt, D. M. The role of hydrochory in structuring riparian and wetland vegetation. Biol. Rev. 85, 837–858 (2010).

    Article  Google Scholar 

  75. Costea, G., Pusch, M. T., Bănăduc, D., Cosmoiu, D. & Curtean-Bănăduc, A. A review of hydropower plants in Romania: distribution, current knowledge, and their effects on fish in headwater streams. Renew. Sustain. Energy Rev. 145, 111003 (2021).

    Article  Google Scholar 

  76. Zarri, L. J., Palkovacs, E. P., Post, D. M., Therkildsen, N. O. & Flecker, A. S. The evolutionary consequences of dams and other barriers for riverine fishes. BioScience 72, 431–448 (2022).

    Article  Google Scholar 

  77. Mijangos, J. L. et al. Fragmentation by major dams and implications for the future viability of platypus populations. Commun. Biol. 5, 1–9 (2022).

    Article  Google Scholar 

  78. Fu, X. et al. Impacts of small hydropower plants on macroinvertebrate communities. Acta Ecol. Sin. 28, 45–52 (2008).

    Article  Google Scholar 

  79. Gabbud, C. & Lane, S. N. Ecosystem impacts of Alpine water intakes for hydropower: the challenge of sediment management. WIREs Water 3, 41–61 (2016).

    Article  Google Scholar 

  80. Gabbud, C., Robinson, C. T. & Lane, S. N. Summer is in winter: disturbance-driven shifts in macroinvertebrate communities following hydroelectric power exploitation. Sci. Total Environ. 650, 2164–2180 (2019).

    Article  CAS  Google Scholar 

  81. Smolar-Žvanut, N. & Mikoš, M. The impact of flow regulation by hydropower dams on the periphyton community in the Soča River, Slovenia. Hydrol. Sci. J. 59, 1032–1045 (2014).

    Article  Google Scholar 

  82. Wang, Y., Wu, N., Tang, T., Wang, Y. & Cai, Q. Small run-of-river hydropower dams and associated water regulation filter benthic diatom traits and affect functional diversity. Sci. Total Environ. 813, 152566 (2022).

    Article  CAS  Google Scholar 

  83. Greimel, F. et al. Hydropeaking impacts and mitigation. In Riverine Ecosystem Management: Science for Governing Towards a Sustainable Future (eds Schmutz, S. & Sendzimir, J.) 91–110 (Springer, 2018).

  84. Bruno, M. C., Maiolini, B., Carolli, M. & Silveri, L. Short time-scale impacts of hydropeaking on benthic invertebrates in an Alpine stream (Trentino, Italy). Limnologica 40, 281–290 (2010).

    Article  Google Scholar 

  85. Wang, J. et al. What explains the variation in dam impacts on riverine macroinvertebrates? A global quantitative synthesis. Environ. Res. Lett. 15, 124028 (2020).

    Article  CAS  Google Scholar 

  86. Schmutz, S. et al. Response of fish communities to hydrological and morphological alterations in hydropeaking rivers of Austria. River Res. Appl. 31, 919–930 (2015).

    Article  Google Scholar 

  87. Young, P. S., Cech, J. J. & Thompson, L. C. Hydropower-related pulsed-flow impacts on stream fishes: a brief review, conceptual model, knowledge gaps, and research needs. Rev. Fish Biol. Fish. 21, 713–731 (2011).

    Article  Google Scholar 

  88. Brunner, M. I. & Naveau, P. Spatial variability in Alpine reservoir regulation: deriving reservoir operations from streamflow using generalized additive models. Hydrol. Earth Syst. Sci. 27, 673–687 (2023).

    Article  Google Scholar 

  89. Feng, M., Zolezzi, G. & Pusch, M. Effects of thermopeaking on the thermal response of alpine river systems to heatwaves. Sci. Total Environ. 612, 1266–1275 (2018).

    Article  CAS  Google Scholar 

  90. Dickson, N. E., Carrivick, J. L. & Brown, L. E. Flow regulation alters alpine river thermal regimes. J. Hydrol. 464–465, 505–516 (2012).

    Article  Google Scholar 

  91. Power, M. E., Dietrich, W. E. & Finlay, J. C. Dams and downstream aquatic biodiversity: potential food web consequences of hydrologic and geomorphic change. Environ. Manag. 20, 887–895 (1996).

    Article  CAS  Google Scholar 

  92. Huang, J. et al. How do small dams alter river food webs? A food quality perspective along the aquatic food web continuum. J. Environ. Manag. 355, 120501 (2024).

    Article  CAS  Google Scholar 

  93. Trung, L. D. et al. Assessing cumulative impacts of the proposed Lower Mekong Basin hydropower cascade on the Mekong River floodplains and Delta — overview of integrated modeling methods and results. J. Hydrol. 581, 122511 (2020).

    Article  Google Scholar 

  94. Chen, Q. et al. Hydropower reservoirs on the upper Mekong River modify nutrient bioavailability downstream. Natl Sci. Rev. 7, 1449–1457 (2020).

    Article  CAS  Google Scholar 

  95. Ma, N. et al. Effects of river damming on biogenic silica turnover: implications for biogeochemical carbon and nutrient cycles. Acta Geochim. 36, 626–637 (2017).

    Article  CAS  Google Scholar 

  96. Stevens, L. E., Shannon, J. P. & Blinn, D. W. Colorado river benthic ecology in Grand Canyon, Arizona, USA: dam, tributary and geomorphological influences. Regul. Rivers Res. Manag. 13, 129–149 (1997).

    Article  Google Scholar 

  97. Kennedy, T. A. et al. Flow management for hydropower extirpates aquatic insects, undermining river food webs. BioScience 66, 561–575 (2016).

    Article  Google Scholar 

  98. Encalada, A. C. & Peckarsky, B. L. Large-scale manipulation of mayfly recruitment affects population size. Oecologia 168, 967–976 (2012).

    Article  Google Scholar 

  99. Ban, X. et al. Impact of Three Gorges Dam operation on the spawning success of four major Chinese carps. Ecol. Eng. 127, 268–275 (2019).

    Article  Google Scholar 

  100. Minckley, W. L. in Colorado River Ecology and Dam Management: Proceedings of a Symposium May 2425, 1990 Santa Fe, New Mexico 124–177 (National Academies Press, 1991).

  101. Li, P. et al. Production of total dissolved gas supersaturation at hydropower facilities and its transport: a review. Water Res. 223, 119012 (2022).

    Article  CAS  Google Scholar 

  102. Bejarano, M. D., Sordo-Ward, Á., Alonso, C., Jansson, R. & Nilsson, C. Hydropeaking affects germination and establishment of riverbank vegetation. Ecol. Appl. 30, e02076 (2020).

    Article  Google Scholar 

  103. Baladrón, A., Bejarano, M. D. & Boavida, I. Functional traits: the pathways to riverine plant resistance in times of hydropeaking. Ecol. Process. 12, 63 (2023).

    Article  Google Scholar 

  104. Rao, R. & Singh, L. Notes on ecological relationship in basking and nesting site utilisation among Kachuga spp. (Reptilia, Chelonia) and Gavialis gangeticus (Reptilia, Crocodilia) in National Chambal Sanctuary. J. Bombay Nat. Hist. Soc. 84, 599–604 (1987).

    Google Scholar 

  105. Zarfl, C. & Dunn, F. E. The delicate balance of river sediments. Science 376, 1385–1386 (2022).

    Article  CAS  Google Scholar 

  106. Hess, L. L. et al. Wetlands of the lowland Amazon basin: extent, vegetative cover, and dual-season inundated area as mapped with JERS-1 synthetic aperture radar. Wetlands 35, 745–756 (2015).

    Article  Google Scholar 

  107. Hayes, D. S. et al. Advancing towards functional environmental flows for temperate floodplain rivers. Sci. Total Environ. 633, 1089–1104 (2018).

    Article  CAS  Google Scholar 

  108. Castello, L. et al. The vulnerability of Amazon freshwater ecosystems. Conserv. Lett. 6, 217–229 (2013).

    Article  Google Scholar 

  109. Kang, B. & Huang, X. Mekong fishes: biogeography, migration, resources, threats, and conservation. Rev. Fish. Sci. Aquac. 30, 170–194 (2022).

    Article  Google Scholar 

  110. Herrera-R, G. A. et al. A synthesis of the diversity of freshwater fish migrations in the Amazon basin. Fish Fish. 25, 114–133 (2024).

    Article  Google Scholar 

  111. Liu, X. & Wang, H. Estimation of minimum area requirement of river-connected lakes for fish diversity conservation in the Yangtze River floodplain. Divers. Distrib. 16, 932–940 (2010).

    Article  Google Scholar 

  112. He, F. et al. Disappearing giants: a review of threats to freshwater megafauna. WIREs Water 4, e1208 (2017).

    Article  Google Scholar 

  113. Arraut, E. M. et al. The lesser of two evils: seasonal migrations of Amazonian manatees in the Western Amazon. J. Zool. 280, 247–256 (2010).

    Article  Google Scholar 

  114. Arraut, E. M. et al. Bottlenecks in the migration routes of Amazonian manatees and the threat of hydroelectric dams. Acta Amaz. 47, 7–18 (2017).

    Article  Google Scholar 

  115. Schöngart, J. et al. The shadow of the Balbina Dam: a synthesis of over 35 years of downstream impacts on floodplain forests in Central Amazonia. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 1117–1135 (2021).

    Article  Google Scholar 

  116. Resende et al. Massive tree mortality from flood pulse disturbances in Amazonian floodplain forests: the collateral effects of hydropower production. Sci. Total Environ. 659, 587–598 (2019).

    Article  Google Scholar 

  117. Mahoney, J. M. & Rood, S. B. Streamflow requirements for cottonwood seedling recruitment — an integrative model. Wetlands 18, 634–645 (1998).

    Article  Google Scholar 

  118. Lytle, D. A. & Merritt, D. M. Hydrologic regimes and riparian forests: a structured population model for cottonwood. Ecology 85, 2493–2503 (2004).

    Article  Google Scholar 

  119. Parolin, P., Wittmann, F. & Ferreira, L. V. Fruit and seed dispersal in Amazonian floodplain trees — a review. Ecotropica 19, 15–32 (2013).

    Google Scholar 

  120. Shumilova, O. et al. Floating matter: a neglected component of the ecological integrity of rivers. Aquat. Sci. 81, 25 (2019).

    Article  Google Scholar 

  121. Latrubesse, E. M. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017).

    Article  CAS  Google Scholar 

  122. Ramalho, W. P., Machado, I. F. & Vieira, L. J. S. Do flood pulses structure amphibian communities in floodplain environments? Biotropica 50, 338–345 (2018).

    Article  Google Scholar 

  123. Tockner, K., Klaus, I., Baumgartner, C. & Ward, J. V. Amphibian diversity and nestedness in a dynamic floodplain river (Tagliamento, NE-Italy). Hydrobiologia 565, 121–133 (2006).

    Article  Google Scholar 

  124. Keppeler, F. W., Cruz, D. A., Dalponti, G. & Mormul, R. P. The role of deterministic factors and stochasticity on the trophic interactions between birds and fish in temporary floodplain ponds. Hydrobiologia 773, 225–240 (2016).

    Article  Google Scholar 

  125. Wang, J., Sheng, Y. & Tong, T. S. D. Monitoring decadal lake dynamics across the Yangtze Basin downstream of Three Gorges Dam. Remote Sens. Environ. 152, 251–269 (2014).

    Article  Google Scholar 

  126. Wang, J., Sheng, Y. & Wada, Y. Little impact of the Three Gorges Dam on recent decadal lake decline across China’s Yangtze Plain. Water Resour. Res. 53, 3854–3877 (2017).

    Article  Google Scholar 

  127. Wu, H. et al. Responses of landscape pattern of China’s two largest freshwater lakes to early dry season after the impoundment of Three-Gorges Dam. Int. J. Appl. Earth Obs. Geoinf. 56, 36–43 (2017).

    Google Scholar 

  128. Wang, W., Fraser, J. D. & Chen, J. Wintering waterbirds in the middle and lower Yangtze River floodplain: changes in abundance and distribution. Bird Conserv. Int. 27, 167–186 (2017).

    Article  CAS  Google Scholar 

  129. Zhang, A. T. & Gu, V. X. Global Dam Tracker: a database of more than 35,000 dams with location, catchment, and attribute information. Sci. Data 10, 111 (2023).

    Article  Google Scholar 

  130. Barbarossa, V. et al. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. Natl Acad. Sci. USA 117, 3648–3655 (2020).

    Article  CAS  Google Scholar 

  131. Liermann, C. R., Nilsson, C., Robertson, J. & Ng, R. Y. Implications of dam obstruction for global freshwater fish diversity. BioScience 62, 539–548 (2012).

    Article  Google Scholar 

  132. Cheng, F., Li, W., Castello, L., Murphy, B. R. & Xie, S. Potential effects of dam cascade on fish: lessons from the Yangtze River. Rev. Fish Biol. Fish. 25, 569–585 (2015).

    Article  Google Scholar 

  133. Wang, Y., Zhang, N., Wang, D. & Wu, J. Impacts of cascade reservoirs on Yangtze River water temperature: assessment and ecological implications. J. Hydrol. 590, 125240 (2020).

    Article  Google Scholar 

  134. Gowans, A. R. D., Armstrong, J. D., Priede, I. G. & Mckelvey, S. Movements of Atlantic salmon migrating upstream through a fish-pass complex in Scotland. Ecol. Freshw. Fish 12, 177–189 (2003).

    Article  Google Scholar 

  135. Horreo, J. L. et al. Impact of habitat fragmentation on the genetics of populations in dendritic landscapes. Freshw. Biol. 56, 2567–2579 (2011).

    Article  Google Scholar 

  136. Dunn, F. E. et al. Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress. Environ. Res. Lett. 14, 084034 (2019).

    Article  Google Scholar 

  137. Lees, A. C., Peres, C. A., Fearnside, P. M., Schneider, M. & Zuanon, J. A. S. Hydropower and the future of Amazonian biodiversity. Biodivers. Conserv. 25, 451–466 (2016).

    Article  Google Scholar 

  138. Soukhaphon, A., Baird, I. G. & Hogan, Z. S. The impacts of hydropower dams in the Mekong River basin: a review. Water 13, 265 (2021).

    Article  Google Scholar 

  139. Hwang, J., Kumar, H., Ruhi, A., Sankarasubramanian, A. & Devineni, N. Quantifying dam-induced fluctuations in streamflow frequencies across the Colorado River Basin. Water Resour. Res. 57, e2021WR029753 (2021).

    Article  Google Scholar 

  140. Lytle, D. A. & Poff, N. L. Adaptation to natural flow regimes. Trends Ecol. Evol. 19, 94–100 (2004).

    Article  Google Scholar 

  141. Oliveira, A. G., Baumgartner, M. T., Gomes, L. C., Dias, R. M. & Agostinho, A. A. Long-term effects of flow regulation by dams simplify fish functional diversity. Freshw. Biol. 63, 293–305 (2018).

    Article  CAS  Google Scholar 

  142. Mims, M. C. & Olden, J. D. Fish assemblages respond to altered flow regimes via ecological filtering of life history strategies. Freshw. Biol. 58, 50–62 (2013).

    Article  Google Scholar 

  143. Hennig, T., Wang, W., Feng, Y., Ou, X. & He, D. Review of Yunnan’s hydropower development. Comparing small and large hydropower projects regarding their environmental implications and socio-economic consequences. Renew. Sustain. Energy Rev. 27, 585–595 (2013).

    Article  Google Scholar 

  144. Kibler, K. M. & Tullos, D. D. Cumulative biophysical impact of small and large hydropower development in Nu River, China. Water Resour. Res. 49, 3104–3118 (2013).

    Article  Google Scholar 

  145. Keijzer, T. et al. Threats of dams to the persistence of the world’s freshwater fishes. Glob. Change Biol. 30, e17166 (2024).

    Article  CAS  Google Scholar 

  146. Ranasinghe, R., Wu, C. S., Conallin, J., Duong, T. M. & Anthony, E. J. Disentangling the relative impacts of climate change and human activities on fluvial sediment supply to the coast by the world’s large rivers: Pearl River Basin, China. Sci. Rep. 9, 9236 (2019).

    Article  Google Scholar 

  147. Paiva, B. P., Schettini, C. A. F. & Siegle, E. Effect of hydropower dam flow regulation on salt-water intrusion: São Francisco River, Brazil. J. Mar. Syst. 241, 103904 (2024).

    Article  Google Scholar 

  148. Ezcurra, E. et al. A natural experiment reveals the impact of hydroelectric dams on the estuaries of tropical rivers. Sci. Adv. 5, eaau9875 (2019).

    Article  CAS  Google Scholar 

  149. Oladosu, G. A. et al. Costs of mitigating the environmental impacts of hydropower projects in the United States. Renew. Sustain. Energy Rev. 135, 110121 (2021).

    Article  Google Scholar 

  150. Trussart, S., Messier, D., Roquet, V. & Aki, S. Hydropower projects: a review of most effective mitigation measures. Energy Policy 30, 1251–1259 (2002).

    Article  Google Scholar 

  151. Thieme, M. et al. Measures to safeguard and restore river connectivity. Environ. Rev. 32, 366–386 (2023).

    Article  Google Scholar 

  152. Peters, R. et al. Sustainable pathways towards universal renewable electricity access in Africa. Nat. Rev. Earth Environ. 5, 137–151 (2024).

    Article  Google Scholar 

  153. Schramm, M. P., Bevelhimer, M. S. & DeRolph, C. R. A synthesis of environmental and recreational mitigation requirements at hydropower projects in the United States. Environ. Sci. Policy 61, 87–96 (2016).

    Article  Google Scholar 

  154. Tharme, R. E. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 19, 397–441 (2003).

    Article  Google Scholar 

  155. Poff, N. L. & Matthews, J. H. Environmental flows in the Anthropocence: past progress and future prospects. Curr. Opin. Environ. Sustain. 5, 667–675 (2013).

    Article  Google Scholar 

  156. Göthe, E. et al. Flow restoration and the impacts of multiple stressors on fish communities in regulated rivers. J. Appl. Ecol. 56, 1687–1702 (2019).

    Article  Google Scholar 

  157. Connor, E. J. & Pflug, D. E. Changes in the distribution and density of pink, chum, and chinook salmon spawning in the Upper Skagit River in response to flow management measures. N. Am. J. Fish. Manag. 24, 835–852 (2004).

    Article  Google Scholar 

  158. Glenn, E. P., Nagler, P. L., Shafroth, P. B. & Jarchow, C. J. Effectiveness of environmental flows for riparian restoration in arid regions: a tale of four rivers. Ecol. Eng. 106, 695–703 (2017).

    Article  Google Scholar 

  159. Stromberg, J. C., Beauchamp, V. B., Dixon, M. D., Lite, S. J. & Paradzick, C. Importance of low-flow and high-flow characteristics to restoration of riparian vegetation along rivers in arid South-western United States. Freshw. Biol. 52, 651–679 (2007).

    Article  Google Scholar 

  160. Schlatter, K. J. et al. Integrating active restoration with environmental flows to improve native riparian tree establishment in the Colorado River Delta. Ecol. Eng. 106, 661–674 (2017).

    Article  Google Scholar 

  161. Olden, J. D. et al. Are large-scale flow experiments informing the science and management of freshwater ecosystems? Front. Ecol. Environ. 12, 176–185 (2014).

    Article  Google Scholar 

  162. Arthington, A. H. et al. Accelerating environmental flows implementation to bend the curve of global freshwater biodiversity loss. Environ. Rev. 32, 387–413 (2023).

    Article  Google Scholar 

  163. Summers, E. J. & Ryder, J. L. A critical review of operational strategies for the management of harmful algal blooms (HABs) in inland reservoirs. J. Environ. Manag. 330, 117141 (2023).

    Article  Google Scholar 

  164. Rheinheimer, D. E., Null, S. E. & Lund, J. R. Optimizing selective withdrawal from reservoirs to manage downstream temperatures with climate warming. J. Water Resour. Plan. Manag. 141, 04014063 (2015).

    Article  Google Scholar 

  165. Twardek, W. M. et al. Bright spots for inland fish and fisheries to guide future hydropower development. Water Biol. Secur. 1, 100009 (2022).

    Article  Google Scholar 

  166. Kondolf, G. M. et al. Sustainable sediment management in reservoirs and regulated rivers: experiences from five continents. Earths Future 2, 256–280 (2014).

    Article  Google Scholar 

  167. Mueller, E. R. et al. The influence of controlled floods on fine sediment storage in debris fan-affected canyons of the Colorado River Basin. Geomorphology 226, 65–75 (2014).

    Article  Google Scholar 

  168. Silva, A. T. et al. The future of fish passage science, engineering, and practice. Fish Fish. 19, 340–362 (2018).

    Article  Google Scholar 

  169. Roscoe, D. W. & Hinch, S. G. Effectiveness monitoring of fish passage facilities: historical trends, geographic patterns and future directions. Fish Fish. 11, 12–33 (2010).

    Article  Google Scholar 

  170. Hershey, H. Updating the consensus on fishway efficiency: a meta-analysis. Fish Fish. 22, 735–748 (2021).

    Article  Google Scholar 

  171. Pelicice, F. M. & Agostinho, A. A. Fish-passage facilities as ecological traps in large neotropical rivers. Conserv. Biol. 22, 180–188 (2008).

    Article  Google Scholar 

  172. Caldas, B. et al. Identifying the current and future status of freshwater connectivity corridors in the Amazon basin. Conserv. Sci. Pract. 5, e12853 (2023).

    Article  Google Scholar 

  173. Mallen-Cooper, M. & Brand, D. A. Non-salmonids in a salmonid fishway: what do 50 years of data tell us about past and future fish passage? Fish. Manag. Ecol. 14, 319–332 (2007).

    Article  Google Scholar 

  174. Zhang, L. et al. To save sturgeons, we need river channels around hydropower dams. Proc. Natl Acad. Sci. USA 120, e2217386120 (2023).

    Article  CAS  Google Scholar 

  175. Schmitt, R. J. P., Bizzi, S., Castelletti, A. & Kondolf, G. M. Improved trade-offs of hydropower and sand connectivity by strategic dam planning in the Mekong. Nat. Sustain. 1, 96–104 (2018).

    Article  Google Scholar 

  176. Ziv, G., Baran, E., Nam, S., Rodríguez-Iturbe, I. & Levin, S. A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl Acad. Sci. USA 109, 5609–5614 (2012).

    Article  CAS  Google Scholar 

  177. Thieme, M. L. et al. Navigating trade-offs between dams and river conservation. Glob. Sustain. 4, e17 (2021).

    Article  Google Scholar 

  178. Almeida, R. M. et al. Strategic planning of hydropower development: balancing benefits and socioenvironmental costs. Curr. Opin. Environ. Sustain. 56, 101175 (2022).

    Article  Google Scholar 

  179. Couto, T. B. A., Messager, M. L. & Olden, J. D. Safeguarding migratory fish via strategic planning of future small hydropower in Brazil. Nat. Sustain. 4, 409–416 (2021).

    Article  Google Scholar 

  180. Flecker, A. S. et al. Reducing adverse impacts of Amazon hydropower expansion. Science 375, 753–760 (2022).

    Article  CAS  Google Scholar 

  181. Herrera-R, G. A. et al. The combined effects of climate change and river fragmentation on the distribution of Andean Amazon fishes. Glob. Change Biol. 26, 5509–5523 (2020).

    Article  Google Scholar 

  182. Fernandes, C. C. Lateral migration of fishes in Amazon floodplains. Ecol. Freshw. Fish. 6, 36–44 (1997).

    Article  Google Scholar 

  183. Espécie, M. et al. Ecosystem services and renewable power generation: a preliminary literature review. Renew. Energy 140, 39–51 (2019).

    Article  Google Scholar 

  184. Peters, R., Berlekamp, J., Tockner, K. & Zarfl, C. Electricity mix from renewable energies can avoid further fragmentation of African rivers. Sustain. Energy Res. 11, 15 (2024).

    Article  Google Scholar 

  185. Jones, N. E. The dual nature of hydropeaking rivers: is ecopeaking possible? River Res. Appl. 30, 521–526 (2014).

    Article  Google Scholar 

  186. Grantham, T. E., Viers, J. H. & Moyle, P. B. Systematic screening of dams for environmental flow assessment and implementation. BioScience 64, 1006–1018 (2014).

    Article  Google Scholar 

  187. Ding, L., Chen, L., Ding, C. & Tao, J. Global trends in dam removal and related research: a systematic review based on associated datasets and bibliometric analysis. Chin. Geogr. Sci. 29, 1–12 (2019).

    Article  Google Scholar 

  188. Bellmore, J. R. et al. Status and trends of dam removal research in the United States. WIREs Water 4, e1164 (2017).

    Article  Google Scholar 

  189. Bellmore, J. R. et al. Conceptualizing ecological responses to dam removal: if you remove it, what’s to come? BioScience 69, 26–39 (2019).

    Article  Google Scholar 

  190. Spänhoff, B. Current status and future prospects of hydropower in Saxony (Germany) compared to trends in Germany, the European Union and the World. Renew. Sustain. Energy Rev. 30, 518–525 (2014).

    Article  Google Scholar 

  191. Vos, M. et al. The Asymmetric Response Concept explains ecological consequences of multiple stressor exposure and release. Sci. Total Environ. 872, 162196 (2023).

    Article  CAS  Google Scholar 

  192. Thieme, M. L. et al. Dams and protected areas: quantifying the spatial and temporal extent of global dam construction within protected areas. Conserv. Lett. 13, e12719 (2020).

    Article  Google Scholar 

  193. Haase, P. et al. The recovery of European freshwater biodiversity has come to a halt. Nature 620, 582–588 (2023).

    Article  CAS  Google Scholar 

  194. van Treeck, R. et al. in Novel Developments for Sustainable Hydropower (eds Rutschmann, P. et al.) 167–216 (Springer, 2022).

  195. Ward, J. V. The four-dimensional nature of lotic ecosystems. J. N. Am. Benthol. Soc. 8, 2–8 (1989).

    Article  Google Scholar 

  196. Jumani, S. et al. River fragmentation and flow alteration metrics: a review of methods and directions for future research. Environ. Res. Lett. 15, 123009 (2020).

    Article  Google Scholar 

  197. Deemer, B. R. et al. Over half a century record of limnology data from Lake Powell, desert Southwest United States: from reservoir filling to present day (1964–2021). Limnol. Oceanogr. Lett. 8, 580–594 (2023).

    Article  Google Scholar 

  198. Šmejkal, M. et al. Living on the edge: reservoirs facilitate enhanced interactions among generalist and rheophilic fish species in tributaries. Front. Environ. Sci. 11, 1099030 (2023).

    Article  Google Scholar 

  199. Long, L., Ji, D., Liu, D., Yang, Z. & Lorke, A. Effect of cascading reservoirs on the flow variation and thermal regime in the lower reaches of the Jinsha River. Water 11, 1008 (2019).

    Article  Google Scholar 

  200. He, F. et al. Impacts of loss of free-flowing rivers on global freshwater megafauna. Biol. Conserv. 263, 109335 (2021).

    Article  Google Scholar 

  201. Egré, D. & Milewski, J. C. The diversity of hydropower projects. Energy Policy 30, 1225–1230 (2002).

    Article  Google Scholar 

  202. Wu, N., Cai, Q. & Fohrer, N. Development and evaluation of a diatom-based index of biotic integrity (D-IBI) for rivers impacted by run-of-river dams. Ecol. Indic. 18, 108–117 (2012).

    Article  CAS  Google Scholar 

  203. Chen, Q., Chen, D., Li, R., Ma, J. & Blanckaert, K. Adapting the operation of two cascaded reservoirs for ecological flow requirement of a de-watered river channel due to diversion-type hydropower stations. Ecol. Model. 252, 266–272 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The work leading to this publication is supported by the National Key Research and Development Program of China (grant number 2022YFF1300900), the Chinese Academy of Sciences (grant number E355S122) and the PRIME programme of the German Academic Exchange Service (DAAD) with funds from the German Federal Ministry of Education and Research (BMBF). J.-C.S. considers this work a contribution to his VILLUM Investigator project ‘Biodiversity Dynamics in a Changing World’, funded by VILLUM FONDEN (grant number 16549), and Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), funded by Danish National Research Foundation (grant number DNRF173). S.C.J. considers this work a contribution to the Leibniz Competition project ‘Freshwater Megafauna Futures’ and acknowledges funding by the European Union’s Horizon Europe research and innovation programme funding for the project DANUBE4ALL (grant number 101093985) and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for the Collaborative Research Centre 1439 RESIST (CRC 1439/1, grant number 426547801). J.D.O. was supported by the Richard C. and Lois M. Worthington Endowed Professor in Fisheries Management from the School of Aquatic and Fishery Sciences, University of Washington. The authors would like to thank Dan Luo and Jida Wang for helping with the figures.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization and discussion of the content. F.H. led the writing and all authors contributed substantially to the drafts of the manuscript. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Fengzhi He  (何逢志).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Rafael Almeida and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

National Water Information System of US Geological Survey: http://waterdata.usgs.gov/nwis/

The IUCN Red List of Threatened Species: https://www.iucnredlist.org

Glossary

Aquatic macrophytes

Plants that are submerged or can float at the water surface.

Attraction efficiency

The percentage of fish detected at the entrance of or inside the fishway in relation to all monitored fish.

Benthic macroinvertebrates

Invertebrates, such as aquatic insects, snails, worms and mussels, that attach to substrates or aquatic macrophytes or burrow into riverbed sediments.

Denil fishways

Fish passages with a series of symmetrical, closely spaced baffles that can redirect water flow and create low-velocity zones at the bottom to allow fish to ascend.

Detritivorous, omnivorous, insectivorous

Classification of animals according to their nutrient uptake by consumption of dead organic material, both plant and animal matter, or insects, respectively.

Equilibrium strategists

Fish species often of small to medium body size with intermediate maturation, small clutch size but high parental care.

Filter-collectors

Macroinvertebrates that feed on floating particles by filtering them from running water.

High-profile diatoms

Tall-stature diatoms that can form long colonies, have good access to nutrients and light, but are exposed to disturbances from fast flow and grazers.

Hydraulic residence time

The average time a water molecule is in a reservoir based on the ratio of reservoir volume to average flow rate.

Hydropeaking

Rapid changes in downstream water level and flow owing to intermittent water releases from hydropower plants.

Hypolimnetic releases

Release of deepwater that is of different temperature than surface waters and has low oxygen concentrations.

Opportunistic strategists

Fish species often of small size with early maturation and low juvenile survivorship.

Passage efficiency

The percentage of fish detected at or beyond the fishway exit in relation to fish detected at the entrance of or inside the fishway.

Periodic strategist

Fish species that are characterized by large body size, late maturity, high fecundity but low juvenile survivorship, and typically depend on highly seasonal environments.

Phytoplankton

Pelagic algae and bacteria that obtain energy via photosynthesis.

Pool-weir fishways

Fish passages with a series of interconnected pools separated by low weirs.

Rheophilic fish

Fish species that prefer to live in a fast-flowing environment.

Semi-aquatic species

Animals and plants that use both aquatic and terrestrial habitats.

Thermal stratification

Lakes and reservoirs have distinct thermal layers at different depths owing to density changes in dependence of temperature.

Thermopeaking

Sudden changes in water temperature in river sections downstream of powerhouses receiving water from high-elevation reservoirs.

Total dissolved gas supersaturation

The level of dissolved gases in water exceeds the solubility threshold under the local atmospheric pressure and temperature.

Zooplankton

Weak active swimming animals that inhabit the water column and obtain energy through consuming other organisms.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, F., Zarfl, C., Tockner, K. et al. Hydropower impacts on riverine biodiversity. Nat Rev Earth Environ 5, 755–772 (2024). https://doi.org/10.1038/s43017-024-00596-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-024-00596-0

  • Springer Nature Limited
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy