A gömb egy geometriai alakzat, mely jelenthet egy felületet (pontosabb megnevezése gömbhéj, esetleg üres gömb) és egy (tömör) testet egyaránt. A (héj)felület esetén egy adott ponttól a térben egyenlő távolságra lévő pontok, míg test esetén a legfeljebb az adott távolságra lévő pontok halmazát értjük rajta.

A gömb perspektivikus négyszöghálója

A gömböt tekinthetjük a kör általánosításának is.

Definíció

szerkesztés
 
A Föld közel gömb alakú, egész pontosan geoid

Gömbnek nevezzük a térben azon pontok halmazát, melyek egy adott P ponttól legfeljebb egy rögzített r távolságra vannak. Ekkor P-t a gömb középpontjának, r értékét pedig a gömb sugarának nevezzük. A P ponttól pontosan r távolságra lévő pontokat együttesen a gömb felületének, vagy felszínének nevezzük. Ha r = 1, akkor egységgömbről beszélünk.

Egyenletek

szerkesztés

Az analitikus geometriában, az (x0, y0, z0) középpontú és r sugarú gömböt azok az (x, y, z) pontok alkotják, melyekre fennáll az alábbi egyenlőtlenség:

 

Az egyenlőség a felületi pontokban teljesül:

 

A belső pontokban szigorú egyenlőtlenség áll fenn:

 

Az r sugarú gömb felületi pontjai paraméterezhetőek a gömbi koordináták segítségével is:

 
Gömbi koordináták
 
 
 

Az origó középpontú, tetszőleges sugarú gömbfelület a következő differenciálegyenlettel írható le:

 

Az egyenlet jól visszatükrözi a tényt, hogy a gömbfelületen mozgó pont helyvektora és sebességvektora mindig merőleges egymásra.

Vektortérben

szerkesztés

Legyen   egy (nem feltétlenül véges dimenziós) vektortér valamely   normával. Ekkor a   középpontú   sugarú gömbfelület megfogalmazható a következőképpen:

 

Észrevehető, hogy háromdimenziós esetben a klasszikus gömbfelülethez, kétdimenzióban a körhöz jutunk az euklideszi normával.

A gömb belső pontjainak halmaza, más szóval a   pont   sugarú környezete, szintén a háromdimenziós eset általánosításaként adható meg.

 

Metrikus térben

szerkesztés

Legyen   metrikus tér. Ekkor a   középpontú   sugarú gömbfelület megfogalmazható a következőképpen:

 

A gömb belső pontjai pedig egyenlőtlenség segítségével:

 

Utóbbit nevezik nílt gömbnek is, a   halmazt pedig zárt gömbnek. Ezeknek lényeges analízisbeli alkalmazásaik vannak.

Forgástestként

szerkesztés

A gömb úgy is definiálható, hogy az a test, ami egy kört átmérője körül megforgatva keletkezik. Ha a kört ellipszissel helyettesítjük, akkor az eredmény forgásellipszoid lesz.

Terminológia

szerkesztés

Egy egyenes, ami metszi a gömböt, legfeljebb két pontban metszi. Ha a gömb egy pontpárján átmenő egyenes tartalmazza a gömb középpontját, akkor a pontpár egyik eleme a másik átellenes vagy antipodális pontja. Egy kör a gömb főköre, ha teljes egészében rajta van a gömbön, és középpontja megegyezik a gömb középpontjával.

Bár a Föld nem pontosan gömb, vagy forgásellipszoid alakú, gömbök esetén gyakran alkalmazzuk a Földre és más csillagászati testekre megszokott terminológiát. Ha egy gömbi pontot Északi-sarknak nevezünk, akkor átellenes pontja a Déli-sark, az egyenlítő pedig a pontpár két tagjától egyenlő távolságra húzódó főkör. A két sarkot összekötő körök a hosszúsági körök, vagy meridiánok. Az egyenlítővel párhuzamos körök a szélességi körök.

Felszín és térfogat

szerkesztés
 
Az ember által alkotott legtökéletesebb gömb, amint visszatükrözi Einstein képét. A gömb nem több mint 40 atommal tér el a szabályostól. Úgy gondolják, hogy csak a neutroncsillagok simábbak

A gömb felszíne:

 ,

a térfogata pedig:

 .

Ezeket többféleképpen, integrálszámítással, közelítő poliéderekkel vagy a Cavalieri-elv segítségével lehet belátni.

A gömbnek van a legkisebb felülete az adott térfogatú testek közül. Másként fogalmazva, rögzített felület esetén a gömb rendelkezik a testek közül a legnagyobb térfogattal (izoperimetrikus egyenlőtlenség). Ennek folyománya, hogy a szabad folyadékfelszínek a gömbhöz minél inkább közeli alakzatokat igyekszenek felvenni.

Egy adott gömb körülírt hengerének térfogata éppen másfélszerese a gömb térfogatának, és a felszíne is másfélszerese a gömb felszínének. Ezt már Arkhimédész is tudta. Ennek belátásához írjuk fel a henger térfogatát és felszínét is:

 .

Elvégezve az osztásokat kapjuk az eredményt.[* 1]

Gömbi geometria

szerkesztés

A gömb felületének pontjai is alkalmasak geometria bevezetésére, ezt gömbi geometriának nevezzük. Ennek a geometriának főleg a távolsági közlekedésben van szerepe, de sok elméleti alkalmazása is van. Ugyanakkor jó néhány meglepő vagy váratlan tulajdonsággal is rendelkezik, ez pedig a szemlélet fejlesztésére is alkalmassá teszi. Az egyik legismertebb ilyen a navigációs paradoxon, ami szerint a "legrövidebb" és "legegyenesebb" útvonalak különböznek.

Például a Földön, mivel jó közelítéssel gömbnek tekinthető, egy objektum helyzetét megadhatjuk a Föld középpontjától való R távolsággal, a λ hosszúsági fokkal,[* 2] és a φ szélességi fokkal.[* 3][1] Sokszor a távolságot nem adják meg, mivel a felszínen közel állandó[* 4], legfeljebb amikor lényeges, a felszíntől mért távolság formájában. Ezen paramétereket földrajzi koordináta-rendszernek is nevezik. Ennek a leképezésnek egyik folyománya, hogy a gömb ekvivalens egy   kockával.

Topológia

szerkesztés

Az n-gömb olyan topologikus tér, ami homeomorf az n+1 dimenziós golyó határával. Magyarul, homeomorf az euklideszi n-gömbbel.

  • A 0-gömb pontpár a diszkrét topológiával
  • Az 1-gömb homeomorf a körrel; tehát minden csomó 1-gömb
  • A 2-gömb homeomorf a (közönséges) gömbbel. Így minden ellipszoid 2-gömb.

Az n-gömböt Sn-nel jelölik. Ez kompakt topologikus sokaság, aminek nincs határa. Nem feltétlenül differenciálható; ha mégis, akkor lehet, hogy nem diffeomorf az euklideszi gömbbel.

Az euklideszi n-gömb kompaktsága könnyen bizonyítható a Borel–Lebesgue-tétellel:

A gömb egy egypontú halmaz ősképe az ||x|| folytonos függvényre nézve, ezért a gömb zárt. Sn nyilván korlátos is. Tehát korlátos és zárt, így kompakt. Az n-dimenziós gömb térfogata  -re  -ig növekszik, majd a nullához konvergál.[2]

További információk

szerkesztés

Megjegyzések

szerkesztés
  1. Ezekre az eredményekre Arkhimédész, mivel a képleteket nem ismerte, közelítő eljárásokkal, többek között az általa felfedezett kimerítéses módszerrrel jött rá.
  2. Ez a greenwichi csillagvizsgálón átmenő hosszúsági körtől való eltérés fokokban mérve.
  3. Ez pedig az Egyenlítőtől való eltérés fokokban.
  4. Kisebb, mint 0,2%.
  1. I. N. Bronstejn, K. A. Szemengyajev, G. Musiol, H. Mühlig. Földrajzi koordináták, Matematikai Kézikönyv. TypoTeX, 154. o. [1999] (2000). ISBN 963 9132 59 4 
  2. n-dimenziós gömb térfogata
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy