A Cavalieri-elv a geometriában, jelesül a térfogatszámításban használt eljárás. Lényege, hogy két test térfogata között állít fel egyenlőséget, így az egyébként nehezen számolható térfogatú testek esetén is kezelhető számításokat végezhetünk.

A Cavalieri-elv szemléltetése

Népszerű megfogalmazás szerint a Cavalieri-elv azt mondja ki, hogy ha két testet azonos síkokkal vágunk szeletekre, és ezen szeletek alapterülete egyenlő, akkor a két test térfogata egyenlő. Valójában azonban a tétel ennél erősebb.[* 1]

Állítás

szerkesztés

Ha két test ugyanazon féltér határán található, az egyes síkmetszeteik páronként azonos területűek, és van olyan, a határt metsző egyenes a féltérben, amivel párhuzamos egyenesek testekkel való metszéspontjai a féltér határáig tartó szakaszt alkotnak, akkor a két testnek van térfogata, és ezek egyenlőek.

Bizonyítás[1]

szerkesztés

Vegyünk két testet, amikre a tétel feltételei érvényesek. Osszuk fel mindkét test m magasságát n egyenlő részre, és ezeken a metszéspontokon át metsszük el a testeket párhuzamos síkokkal. A síkmetszetekre felfelé és lefelé állítsunk m/n magasságú, a metsző egyenesekkel párhuzamos tengelyű hengereket.[* 2] Ezek térfogata egyenlő lesz. A két testet páronként egybevágó hengerek sorozatával közelítjük. Ha a magasság felbontását finomítjuk, akkor ez az egyenlőség folyamatosan fennáll, tehát ha van a két testnek térfogata, akkor az feltétlenül egyenlő.

Igazoljuk hát, hogy van térfogatuk! Akármelyik testet nézzük, az eljárás révén a test térfogatát egy külső és egy belső hengersorral közelítjük. Ezek térfogata legyen V(O) és V(I)! Ekkor van olyan ε valós szám, hogy

 

ahol t a síkmetszet területe. Mivel ε a felosztástól függ, ezért

 

így határértékben a két térfogat megegyezik. Ebből következik, hogy a testnek van térfogata. QED

Alkalmazások

szerkesztés

A Cavalieri-elvnek jellemző alkalmazása különféle testek térfogatának meghatározása.

Gömb térfogatának meghatározása

szerkesztés

Adott egy r sugarú félgömb. Vegyünk fel a lapjával azonos síkon fekvő, r sugarú és magasságú egyenes hengert! A féltér határával párhuzamos, attól 0≤x≤r magasságban lévő metsző sík által a gömbből kimetszett kör sugara a Pitagorasz-tétel szerint

 

így a kör területe

 

Az első tag a henger síkmetszeteinek területét adja. Mivel x lineárisan nő 0-tól r-ig, ezért a második tag egy kúp síkmetszeteinek területe, amely középpontja a határoló félsíkon, a henger tengelyegyenesén van és alaplapja a henger felső alaplapja. Mindkét test esetében a határsíkra merőleges egyenesek a Cavalieri-elv által megkívánt tulajdonságúak, így a félgömb térfogata a henger megmaradó részének térfogatával egyenlő.

A henger térfogata

 

a kúpé

 

azért a két test különbségének térfogata

 

Ez a félgömb térfogata, a teljes gömb ennek a duplája, így

  QED

Megjegyzések

szerkesztés
  1. Sok esetben ilyen formában is használják, mivel a vizsgált esetekben a testek térfogatának létezése eleve biztosított.
  2. Pontosabban hengerszerű testeket, mivel az alaplap jellemzően nem kör.
  1. Dr. Pelle Béla. Geometria. Tankönyvkiadó, 282. o. (1974). ISBN 963 017 0746 6 
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy