Skip to content

PyTorch implementation of the ACL 2019 paper "Improving Question Answering over Incomplete KBs with Knowledge-Aware Reader"

Notifications You must be signed in to change notification settings

xwhan/Knowledge-Aware-Reader

Repository files navigation

Code for the ACL 2019 paper:

Improving Question Answering over Incomplete KBs with Knowledge-Aware Reader

Paper link: https://arxiv.org/abs/1905.07098

Model Overview:

Requirements

  • PyTorch 1.0.1
  • tensorboardX
  • tqdm
  • gluonnlp

Prepare data

mkdir datasets && cd datasets && wget https://sites.cs.ucsb.edu/~xwhan/datasets/webqsp.tar.gz && tar -xzvf webqsp.tar.gz && cd ..

Full KB setting

CUDA_VISIBLE_DEVICES=0 python train.py --model_id KAReader_full_kb --max_num_neighbors 50 --label_smooth 0.1 --data_folder datasets/webqsp/full/ 

Incomplete KB setting

Note: The Hits@1 should match or be slightly better than the number reported in the paper. More tuning on threshold should give you better F1 score.

30% KB

CUDA_VISIBLE_DEVICES=0 python train.py --model_id KAReader_kb_03 --max_num_neighbors 50 --use_doc --data_folder datasets/webqsp/kb_03/ --eps 0.05

10% KB

CUDA_VISIBLE_DEVICES=0 python train.py --model_id KAReader_kb_01 --max_num_neighbors 50 --use_doc --data_folder datasets/webqsp/kb_01/ --eps 0.05

50% KB

CUDA_VISIBLE_DEVICES=0 python train.py --model_id KAReader_kb_05 --num_layer 1 --max_num_neighbors 100 --use_doc --data_folder datasets/webqsp/kb_05/ --eps 0.05 --seed 3 --hidden_drop 0.05

Citation

@inproceedings{xiong-etal-2019-improving,
    title = "Improving Question Answering over Incomplete {KB}s with Knowledge-Aware Reader",
    author = "Xiong, Wenhan  and
      Yu, Mo  and
      Chang, Shiyu  and
      Guo, Xiaoxiao  and
      Wang, William Yang",
    booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/P19-1417",
    doi = "10.18653/v1/P19-1417",
    pages = "4258--4264",
}

About

PyTorch implementation of the ACL 2019 paper "Improving Question Answering over Incomplete KBs with Knowledge-Aware Reader"

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy