Skip to content
#

zero-shot-classification

Here are 105 public repositories matching this topic...

This repository offers a comprehensive collection of tutorials on state-of-the-art computer vision models and techniques. Explore everything from foundational architectures like ResNet to cutting-edge models like YOLO11, RT-DETR, SAM 2, Florence-2, PaliGemma 2, and Qwen2.5VL.

  • Updated Apr 24, 2025
  • Jupyter Notebook
text-to-image-eval

Evaluate custom and HuggingFace text-to-image/zero-shot-image-classification models like CLIP, SigLIP, DFN5B, and EVA-CLIP. Metrics include Zero-shot accuracy, Linear Probe, Image retrieval, and KNN accuracy.

  • Updated Jan 15, 2025
  • Jupyter Notebook

Alternate Implementation for Zero Shot Text Classification: Instead of reframing NLI/XNLI, this reframes the text backbone of CLIP models to do ZSC. Hence, can be lightweight + supports more languages without trading-off accuracy. (Super simple, a 10th-grader could totally write this but since no 10th-grader did, I did) - Prithivi Da

  • Updated Apr 5, 2022
  • Python

Improve this page

Add a description, image, and links to the zero-shot-classification topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the zero-shot-classification topic, visit your repo's landing page and select "manage topics."

Learn more

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy