Skip to content
#

discriminant-analysis

Here are 59 public repositories matching this topic...

This module allows users to analyze k-means & hierarchical clustering, and visualize results of Principal Component, Correspondence Analysis, Discriminant analysis, Decision tree, Multidimensional scaling, Multiple Factor Analysis, Machine learning, and Prophet analysis.

  • Updated Apr 17, 2025
  • R

Performed statistical-EDA and normalization analysis on digitized mass images with 10 nuclei features (radius, texture) Predicted malignant - benign cancer using Logistic, LDA-QDA, KNN, Lasso-Ridge classifiers with 0.89, 0.88, 0.92, 0.96 and 0.97 accuracies respectively along with decision boundaries and ROC curves

  • Updated Mar 18, 2022
  • Jupyter Notebook

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well in noisy and contaminated datasets.

  • Updated Sep 6, 2022
  • Python

Improve this page

Add a description, image, and links to the discriminant-analysis topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the discriminant-analysis topic, visit your repo's landing page and select "manage topics."

Learn more

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy