Skip to content

sauriii98/Deep-Learning-algorithms

Repository files navigation

Deep-Learning-algorithms

Implementation of all basic algorithms needed in Deep Learning

  1. Logistic_regression_using_NN.ipynb

    • It is a simple logistic regression algorithm developed using NN (Neural Networks) with zero hidden layers
    • In this notebook, binary classification is done on the dataset of cats(cat or not cat)
  2. NN_with_1_hidden_layer.py

    • It's a python script file which contains all functions required to develop NN (Neural Networks) with one hidden layer
    • function designed are:
      • sigmoid(z)
      • initialize(n_x,n_h1,n_y)
      • forword_propagation(X,parameters)
      • evaluate_cost(A2,Y, parameters, lambd)
      • backword_propagation(X,Y,cache,parameters,lambd)
      • update_parameters(parameters,grads,learning_rate)
      • predict(parameters, X)
      • model(X_train, Y_train, X_test, Y_test,n_h1, num_iterations, learning_rate,lambd)
      • plot_cost(costs)
  3. deep_NN_with_L_layers.py

    • It's a python script file which contains all functions required to develop NN (Neural networks) with 'n' hidden layer
    • It's the generalized algorithm for CNN
    • Functions designed are:
      • sigmoid(Z)
      • relu(Z)
      • sigmoid_backward(dA, cache)
      • relu_backward(dA, cache)
      • initialize_parameters(layer_dims)
      • linear_forward(A, W, b)
      • linear_activation_forward(A_prev, W, b, activation)
      • L_model_forward(X, parameters)
      • compute_cost(AL, Y)
      • linear_backward(dZ, cache)
      • linear_activation
      • linear_activation_backward(dA, cache, activation)
      • L_model_backward(AL, Y, caches)
      • update_parameters(parameters, grads, learning_rate)
      • predict(X, parameters)
      • L_layer_model(X, Y, layers_dims, learning_rate, num_iterations, print_cost)
      • plot_cost(costs)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy