Skip to content

A collection of 500+ real-world ML & LLM system design case studies from 100+ companies. Learn how top tech firms implement GenAI in production.

License

Notifications You must be signed in to change notification settings

rahmat-ullah/genai-llm-ml-case-studies

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

3 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ€– GenAI & LLM System Design: 500+ Production Case Studies

GitHub stars GitHub forks GitHub issues GitHub license PRs Welcome

The largest collection of 500+ real-world Generative AI & LLM system design case studies from 130+ companies. Learn how industry leaders design, deploy, and optimize large language models and generative AI systems in production.

First published: June 14, 2023. Last updated: March 08, 2025

πŸ” Quick Navigation

πŸ“š What's Inside

This repository documents how companies build and deploy production-grade Generative AI and LLM systems, focusing on:

  • Architecture decisions for RAG, fine-tuning, and multi-modal systems
  • Scaling strategies for billion-parameter models
  • Optimization techniques for latency, cost, and performance
  • Evaluation frameworks for LLM outputs and hallucination mitigation
  • Deployment patterns across industries

Perfect for:

  • AI/ML Engineers implementing LLM-powered features
  • Engineering teams designing scalable GenAI architectures
  • Leaders planning generative AI initiatives
  • Technical interviews on LLM system design

πŸ† Featured LLM Case Studies

RAG & Knowledge Retrieval

GenAI Applications

πŸ“Š Browse by Industry

πŸ’‘ Browse by LLM/GenAI Use Cases

πŸ” Top Companies with LLM & GenAI Case Studies

πŸ“š LLM System Design Patterns

πŸ“ˆ LLM Evolution Timeline

  • 2023 Q1-Q2: First wave of RAG implementations
  • 2023 Q3-Q4: Fine-tuning becomes mainstream
  • 2024 Q1-Q2: Agent architectures emerge
  • 2024 Q3-Q4: Multi-modal systems gain traction
  • 2025 Q1: Real-time personalization with LLMs

πŸ—οΈ GenAI Architectures

RAG (Retrieval-Augmented Generation)

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                 β”‚     β”‚                 β”‚     β”‚                 β”‚
β”‚  Document       │────▢│  Vector         β”‚     β”‚                 β”‚
β”‚  Corpus         β”‚     β”‚  Database       │────▢│                 β”‚
β”‚                 β”‚     β”‚                 β”‚     β”‚   LLM           β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β”‚   Generation    β”‚
                                                β”‚                 β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”‚                 β”‚
β”‚                 β”‚     β”‚                 β”‚     β”‚                 β”‚
β”‚  User           │────▢│  Query          │────▢│                 β”‚
β”‚  Query          β”‚     β”‚  Processing     β”‚     β”‚                 β”‚
β”‚                 β”‚     β”‚                 β”‚     β”‚                 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Fine-tuning Approaches

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                 β”‚     β”‚                 β”‚     β”‚                 β”‚
β”‚  Base LLM       │────▢│  Fine-tuning    │────▢│  Specialized    β”‚
β”‚  Model          β”‚     β”‚  Pipeline       β”‚     β”‚  Model          β”‚
β”‚                 β”‚     β”‚                 β”‚     β”‚                 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                              β–²
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”           β”‚
β”‚                 β”‚           β”‚
β”‚  Company        β”‚β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚  Data           β”‚
β”‚                 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Feature Store for LLMs

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                 β”‚     β”‚                 β”‚
β”‚  Real-time      │────▢│  Feature        β”‚
β”‚  Data           β”‚     β”‚  Computation    β”‚
β”‚                 β”‚     β”‚                 β”‚     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β”‚                 β”‚
                              β”‚                 β”‚                 β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”           β–Ό                 β”‚                 β”‚
β”‚                 β”‚     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”‚                 β”‚
β”‚  Batch          │────▢│  Feature        │────▢│  LLM            β”‚
β”‚  Data           β”‚     β”‚  Store          β”‚     β”‚  Application    β”‚
β”‚                 β”‚     β”‚                 β”‚     β”‚                 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

🀝 Contributing

Contributions are welcome! Help us document the evolving GenAI landscape:

  1. Fork the repository
  2. Create a new branch
  3. Add your LLM/GenAI case study using the established format
  4. Submit a pull request

See CONTRIBUTING.md for detailed guidelines.

πŸ“„ License

This repository is licensed under the MIT License - see the LICENSE file for details.

πŸ™ Acknowledgements

  • Thanks to all the companies and engineers who shared their LLM/GenAI implementation experiences
  • All original sources are linked in each case study

⭐ Found this valuable for your GenAI/LLM work? Star the repository to help others discover it! ⭐

About

A collection of 500+ real-world ML & LLM system design case studies from 100+ companies. Learn how top tech firms implement GenAI in production.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy