Skip to content

mljs/pca

Repository files navigation

ml-pca

Principal component analysis (PCA).

Zakodium logo

Maintained by Zakodium

NPM version build status DOI npm download

Installation

$ npm install ml-pca

Usage

const { PCA } = require('ml-pca');
const dataset = require('ml-dataset-iris').getNumbers();
// dataset is a two-dimensional array where rows represent the samples and columns the features
const pca = new PCA(dataset);
console.log(pca.getExplainedVariance());
/*
[ 0.9246187232017269,
  0.05306648311706785,
  0.017102609807929704,
  0.005212183873275558 ]
*/
const newPoints = [
  [4.9, 3.2, 1.2, 0.4],
  [5.4, 3.3, 1.4, 0.9],
];
console.log(pca.predict(newPoints)); // project new points into the PCA space
/*
[
  [ -2.830722471866897,
    0.01139060953209596,
    0.0030369648815961603,
    -0.2817812120420965 ],
  [ -2.308002707614927,
    -0.3175048770719249,
    0.059976053412802766,
    -0.688413413360567 ]]
*/

License

MIT

About

Principal component analysis

Topics

Resources

License

Stars

Watchers

Forks

Contributors 8

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy