Skip to content

mahesh147/KMeans-Clustering

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 

Repository files navigation

KMeans-Clustering

A simple K-Means Clustering model implemented in python. The class KMeans is imported from sklearn.cluster library. In order to find the optimal number of cluster for the dataset, the model was provided with different numbers of cluster ranging from 1 to 10. The 'k-means++' method to passed to the init argument to avoid the Random Initialization Trap. The max_iter and the n_init were passed with their default values.

The WCSS ( or Within Cluster Sum of Squares ) was caluated and plotted to find the optimal number of clusters. The "Elbow Method" was used to find the optimal number of clusters.

Once the optimal number of clusters were found the model was reinitalised with the n_cluster arguments begin passed with the optimal number of clusters found using the "Elbow Method".

Finally, the clusters were visualised using scatter plot.

Releases

No releases published

Packages

No packages published

Languages

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy