Skip to content

JamesHotniel78/Algorithm-BFGS-in-R-Project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 

Repository files navigation

JamesHotniel.github.io

OPTIMIZATION OF BINARY LOGISTIC REGRESSION PARAMETERS USING THE BROYDEN-FLETCHER-GOLDFARB-SHANNO ALGORITHM IN THE QUASI-NEWTON METHOD

The following is the syntax of the BFGS algorithm in Binary Logistic Regression Case Study: Study Period Status of FMIPA Undergraduate Program Graduates Mulawarman University in 2021

The research variables consist of a dependent variable (Y) and an independent variable (X). The dependent variable is the study period statistics of graduates of the FMIPA Mulawarman University Undergraduate Program in 2021 (Y). Independent variables include Grade Point Average (GPA) (X1), gender (X2), TOEFL score (X3), study program (X4), high school origin status (X5), region of origin (X6), and age (X7) . Variable notation, data types, operational definitions of variables.

The binary logistic regression parameter estimates were calculated with the help of R software using the "maxLik" package.

Syntax:

##Statistic Deskription

library("pastecs") library("dplyr") data=read.csv(file.choose(), header=TRUE, sep= ";") View(data) names(data) data$X2<-as.factor(data$X2) data$X4<-as.factor(data$X4) data$X41<-ifelse(data$X4==1,1,0) data$X41<-as.factor(data$X41) data$X42<-ifelse(data$X4==2,1,0) data$X42<-as.factor(data$X42) data$X43<-ifelse(data$X4==3,1,0) data$X43<-as.factor(data$X43) data$X5<-as.factor(data$X5) data$X6<-as.factor(data$X6) str(data) attach(data) summary(data$X1) summary(data$X3) summary(data$X7)

##Multikolinieritas Detection

library("car") reg=lm(V~X1+X3+X7,data=data) vif(reg) #Tabulasi X2 dengan X41 tab.x2.x4=table(data$X2,data$X4) tab.x2.x4 ind.test.x2.x4=chisq.test(tab.x2.x4) ind.test.x2.x4 #Tabulasi X2 dengan X5 tab.x2.x5=table(data$X2,data$X5) tab.x2.x5 ind.test.x2.x5=chisq.test(tab.x2.x5) ind.test.x2.x5 #Tabulasi X2 dengan X6 tab.x2.x6=table(data$X2,data$X6) tab.x2.x6 ind.test.x2.x6=chisq.test(tab.x2.x6) ind.test.x2.x6 #Tabulasi X4 dengan X5 tab.x4.x5=table(data$X4,data$X5) tab.x4.x5 ind.test.x4.x5=chisq.test(tab.x4.x5) ind.test.x4.x5 #Tabulasi X4 dengan X6 tab.x4.x6=table(data$X6,data$X4) tab.x4.x6 ind.test.x4.x6=chisq.test(tab.x4.x6) ind.test.x4.x6 #Tabulasi X5 dengan X6 tab.x5.x6=table(data$X5,data$X6) tab.x5.x6 ind.test.x5.x6=chisq.test(tab.x5.x6) ind.test.x5.x6

##Parameter Estimation

library("maxLik") library("optimx") library("pscl")

#Likelihood Function

ll<- function(par){ y<- as.vector(data$Y) x<- as.matrix(cbind(1, data$X1, data$X2, data$X3, data$X5, data$X6, data$X7)) beta <- par[1:7] m = length(par) n = length(y) loglik = rep(0,n) for(i in 1:n){ xbeta= as.numeric(x[i,]%*%beta) yd = y[i]*xbeta loglik[i]=yd-log(1+exp(xbeta)) } return(loglik) }

#Gradien

gl<- function(par){ y<- as.matrix(data$Y) x <- as.matrix(cbind(1, data$X1, data$X2, data$X3, data$X5, data$X6, data$X7)) beta <- par[1:7] n = length(y) m = length(par) gg <- matrix(0,n,m) p<- matrix(n,1) xbeta<- matrix(n,1) for(i in 1:n){ for(j in 1:m){ xbeta[i] <- as.numeric(x[i,]%%beta) p[i]<- exp(xbeta[i])/(1+exp(xbeta[i])) gg[i,j] <- x[i,j]%%(y[i]-p[i]) } } return(gg) }

#MaxLikBFGS

sv<- c(Intercept=0, B1=0, B2=0, B3=0, B5=0, B6=0, B7=0) max <- maxControl(tol=1e-3,print.level=3,iterlim=200) mle<-maxLik(logLik=ll, grad = gl, start= sv, method="BFGS", control=max) mle gradient(mle) hessian(mle)

##Simultan Test

library("MASS") llfull<-as.matrix(ll(c(coef(mle)))) llreduced<-as.matrix(ll(c(0,0,0,0,0,0,0,0,0,0))) model_full <- as.numeric(colSums(llfull)) model_full model_reduced <-as.numeric(colSums(llreduced)) model_reduced LRT <- -2*(model_reduced-model_full) LRT p.val <-pchisq(LRT, df = 9, lower.tail=FALSE) p.val

##Parsial Test

BFGS=coef(mle) BFGS se=stdEr(mle) W<-BFGS/se W

##Odd Ratio

Ob1<-4.4899213 Ob7<--1.9893193 #Odd Ratio B1 OR1<-exp(Ob1)*0.01 OR1 #Odd Ratio B7 OR7<-exp(Ob7)*1 OR7

About

Binary Logistic Regression Analysis using the Broyden-Fletcher-Goldfarb-Shanno Algorithm on the Quasi-Newton Method

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy