Skip to content

10mohi6/portfolio-backtest-python

Repository files navigation

portfolio-backtest

PyPI License: MIT codecov Build Status PyPI - Python Version Downloads

portfolio-backtest is a python library for backtest portfolio asset allocation on Python 3.7 and above.

Installation

$ pip install portfolio-backtest
$ pip install PyPortfolioOpt

Usage

basic run

from portfolio_backtest import Backtest

Backtest(tickers=["VTI", "AGG", "GLD"]).run()

tangency-portfolio.png minimum-variance-portfolio.png hierarchical-risk-parity-portfolio.png minimum-cvar-portfolio.png cumulative-return.png

advanced run

from portfolio_backtest import Backtest
import pprint

bt = Backtest(
    tickers={
        "VTI": 0.6,
        "AGG": 0.25,
        "GLD": 0.15,
    },
    target_return=0.1,
    target_cvar=0.025,
    data_dir="data",
    start="2011-04-10",
    end="2021-04-10",
)
pprint.pprint(bt.run(plot=True))
[{'Annual volatility': '10.9%',
  'Conditional Value at Risk': '',
  'Cumulative Return': '160.9%',
  'Expected annual return': '9.6%',
  'Sharpe Ratio': '0.70',
  'portfolio': 'Your Portfolio',
  'tickers': {'AGG': 0.25, 'GLD': 0.15, 'VTI': 0.6}},
 {'Annual volatility': '6.3%',
  'Conditional Value at Risk': '',
  'Cumulative Return': '102.3%',
  'Expected annual return': '7.0%',
  'Sharpe Ratio': '0.79',
  'portfolio': 'Tangency Portfolio',
  'tickers': {'AGG': 0.67099, 'GLD': 0.0, 'VTI': 0.32901}},
 {'Annual volatility': '4.3%',
  'Conditional Value at Risk': '',
  'Cumulative Return': '53.3%',
  'Expected annual return': '4.3%',
  'Sharpe Ratio': '0.53',
  'portfolio': 'Minimum Variance Portfolio',
  'tickers': {'AGG': 0.91939, 'GLD': 0.00525, 'VTI': 0.07536}},
 {'Annual volatility': '4.0%',
  'Conditional Value at Risk': '',
  'Cumulative Return': '48.7%',
  'Expected annual return': '4.1%',
  'Sharpe Ratio': '0.51',
  'portfolio': 'Hierarchical Risk Parity Portfolio',
  'tickers': {'AGG': 0.89041, 'GLD': 0.05695, 'VTI': 0.05263}},
 {'Annual volatility': '',
  'Conditional Value at Risk': '0.5%',
  'Cumulative Return': '52.1%',
  'Expected annual return': '4.2%',
  'Sharpe Ratio': '',
  'portfolio': 'Minimum CVaR Portfolio',
  'tickers': {'AGG': 0.93215, 'GLD': 0.0, 'VTI': 0.06785}},
 {'Annual volatility': '7.7%',
  'Conditional Value at Risk': '',
  'Cumulative Return': '166.5%',
  'Expected annual return': '10.0%',
  'Sharpe Ratio': '1.04',
  'portfolio': 'Semi Variance Portfolio (target return 10.0%)',
  'tickers': {'AGG': 0.39504, 'GLD': 0.0, 'VTI': 0.60496}},
 {'Annual volatility': '',
  'Conditional Value at Risk': '2.5%',
  'Cumulative Return': '251.3%',
  'Expected annual return': '13.3%',
  'Sharpe Ratio': '',
  'portfolio': 'Return Maximize CVaR Portfolio (target CVaR 2.5%)',
  'tickers': {'AGG': 0.08851, 'GLD': 0.0, 'VTI': 0.91149}}]

advanced-your-portfolio.png advanced-tangency-portfolio.png advanced-minimum-variance-portfolio.png advanced-hierarchical-risk-parity-portfolio.png advanced-minimum-cvar-portfolio.png advanced-return-maximize-cvar-portfolio-(target-cvar-2.5%).png advanced-semi-variance-portfolio-(target-return-10.0%).png advanced-cumulative-return.png

Provides a method (discrete_allocation) that can be converted into an actual allocation available for purchase by entering the latest price and desired portfolio size ($ 10,000 in this example)

from portfolio_backtest import Backtest

bt = Backtest(
    tickers={
        "VTI": 0.6,
        "AGG": 0.25,
        "GLD": 0.15,
    }
)
print(bt.discrete_allocation(total_portfolio_value=10000))
{'Discrete allocation': {'VTI': 28, 'AGG': 21, 'GLD': 9}, 'Funds remaining': '$109.45'}

Supported Portfolio

  • Your Portfolio
  • Hierarchical Risk Parity Portfolio
  • Tangency Portfolio
  • Minimum Variance Portfolio
  • Minimum CVaR Portfolio
  • Semi Variance Portfolio
  • Return Maximize CVaR Portfolio

About

portfolio-backtest is a python library for backtest portfolio asset allocation on Python 3.7 and above.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy