Ir al contenido

Rigidez

De Wikipedia, la enciclopedia libre
Esquema de aumento de rigidez

En ingeniería, la rigidez es una medida cuantitativa de la oposición a las deformaciones elásticas producidas en un material a causa de una fuerza o un esfuerzo, que contempla la capacidad de un elemento estructural para soportar esfuerzos sin adquirir grandes deformaciones.[1]

Los coeficientes de rigidez son magnitudes físicas que cuantifican la rigidez de un elemento resistente bajo diversas configuraciones de carga. Normalmente las rigideces se calculan como la razón entre una fuerza aplicada y el desplazamiento obtenido por la aplicación de esa fuerza.

Para barras o vigas se habla así de rigidez axial, rigidez flexional, rigidez torsional o rigidez frente a esfuerzos cortantes, etc.[2]

Rigideces de prismas mecánicos

[editar]

El comportamiento elástico de una barra o prisma mecánico sometido a pequeñas deformaciones está determinado por 8 coeficientes elásticos. Estos coeficientes elásticos o flexibles depende de:

  1. La sección transversal, cuanto más gruesa sea la sección más fuerza será necesaria para deformarla. Eso se refleja en la necesidad de usar cables más gruesos para arriostrar debidamente los mástiles de los barcos que son más largos, o que para hacer vigas más rígidas se necesiten vigas con mayor sección y más grandes.
  2. El material del que esté fabricada la barra, si se fabrican dos barras de idénticas dimensiones geométricas, pero siendo una de acero y la otra de plástico la primera es más rígida porque el material tiene mayor módulo de Young (E).
  3. La longitud de la barra elástica (L), fijadas las fuerzas sobre una barra estas producen deformaciones proporcionales a las fuerzas y a las dimensiones geométricas. Como los desplazamientos, acortamientos o alargamientos son proporcionales al producto de deformaciones por la longitud de la barra, entre dos barras de la misma sección transversal y fabricadas del mismo material, la barra más larga sufrirá mayores desplazamientos y alargamientos, y por tanto mostrará menor resistencia absoluta a los cambios en las dimensiones.

Funcionalmente las rigideces tienen la forma genérica:

Símbolo Nombre
Rigidez
Módulo de Young
Longitud de la barra
Magnitud puramente geométrica dependiente del tamaño y forma de la sección transversal
Coeficientes adimensional dependiente del tipo de rigidez que se está examinando
Coeficientes adimensional dependiente del tipo de rigidez que se está examinando

Todas estas rigideces intervienen en la matriz de rigidez elemental que representa el comportamiento elástico dentro de una estructura.

Rigidez axial

[editar]

La rigidez axial de un prisma o barra recta, como por ejemplo una viga o un pilar es una medida de su capacidad para resistir intentos de alargamiento o acortamiento por la aplicación de cargas según su eje.

Símbolo Nombre
Rigidez axial
Área de la sección transversal
Módulo de Young del material de la barra
Longitud

Rigidez flexional

[editar]

La rigidez flexional de una barra recta es la relación entre el momento flector aplicado en uno de sus extremos y el ángulo girado por ese extremo al deformarse cuando la barra está empotrada en el otro extremo. Para barras rectas de sección uniforme existen dos coeficientes de rigidez según el momento flector esté dirigido según una u otra dirección principal de inercia. Esta rigidez viene dada:[3]

Donde son los segundos momentos de área de la sección transversal de la barra.

Rigidez frente a cortante

[editar]

La rigidez frente a cortante es la relación entre los desplazamientos verticales de un extremo de una viga y el esfuerzo cortante aplicado en los extremos para provocar dicho desplazamiento. En barras rectas de sección uniforme existen dos coeficientes de rigidez según cada una de las direcciones principales:

Rigidez mixta flexión-cortante

[editar]

En general debido a las características peculiares de la flexión cuando el momento flector no es constante sobre una taza prismática aparecen también esfuerzos cortantes, eso hace al aplicar esfuerzos de flexión aparezcan desplazamientos verticales y viceversa, cuando se fuerzan desplazamientos verticales aparecen esfuerzos de flexión. Para representar adecuadamente los desplazamientos lineales inducidos por la flexión, y los giros angulares inducidos por el cortante, se define la rigidez mixta cortante-flexión que para una barra recta resulta ser igual a:

Rigidez torsional

[editar]

La rigidez torsional en una barra recta de sección uniforme es la relación entre el momento torsor aplicado en uno de sus extremos y el ángulo girado por este extremo, al mantener fijo el extremo opuesto de la barra:

Símbolo Nombre
Rigidez torsional
Módulo elástico transversal
Momento de inercia torsional
Longitud de la barra

Rigideces en placas y láminas

[editar]

De manera similar a lo que sucede con elementos lineales las rigideces dependen del material y de la geometría, en este caso el espesor de la placa o lámina. Las rigideces en este caso tienen la forma genérica:

Símbolo Nombre
Rigidez en placa
Coeficiente de Poisson
Módulo de Young
Espesor del elemento bidimensional
Entero

Rigidez de membrana

[editar]

La rigidez de membrana es el equivalente bidimensional de la rigidez axial en el caso de elementos lineales viene dada por:

Símbolo Nombre
Rigidez de membrana
Coeficiente de Poisson
Módulo de Young
Módulo elástico transversal
Espesor del elemento bidimensional

Rigidez flexional

[editar]

Para una placa delgada (modelo de Love-Kircchoff) de espesor constante la única rigidez relevante es la que da cuenta de las deformaciones provocadas por la flexión bajo carga perpendicular a la placa. Esta rigidez se conoce como rigidez flexional de placas y viene dada por:

Símbolo Nombre
Rigidez flexional
Coeficiente de Poisson
Módulo de Young
Espesor de la placa

Flexibilidad

[editar]

El inverso de la rigidez es la flexibilidad, típicamente medido en unidades de metros por newton. En reología, se puede definir como la relación entre la deformación y la tensión,[4]​ y así tomar las unidades de tensión recíproca, por ejemplo, 1/Pa.

Aplicaciones

[editar]

La rigidez de una estructura es de importancia capital en muchas aplicaciones de ingeniería, por lo que el módulo de elasticidad suele ser una de las propiedades principales que se tienen en cuenta al seleccionar un material. Se busca un módulo de elasticidad alto cuando se busca minimizar la deflexión, mientras que se requiere un módulo de elasticidad bajo cuando se necesita flexibilidad.

En biología, la rigidez de la matriz extracelular es importante para guiar la migración de las células en un fenómeno llamado durotaxis.

Otra aplicación de la rigidez se encuentra en la biología de la piel. La piel mantiene su estructura debido a su tensión intrínseca, a la que contribuye el colágeno, una proteína extracelular que representa aproximadamente el 75% de su peso seco. [5]​ La flexibilidad de la piel es un parámetro de interés que representa su firmeza y extensibilidad, abarcando características como la elasticidad, la rigidez y la adherencia. Estos factores tienen importancia funcional para los pacientes.[6]​ Esto es importante para los pacientes con lesiones traumáticas en la piel, en los que la flexibilidad puede reducirse debido a la formación y sustitución de tejido cutáneo sano por una cicatriz patológica. Esto puede evaluarse tanto subjetivamente como objetivamente utilizando un dispositivo como el cutómetro. El Cutómetro aplica un vacío a la piel y mide hasta qué punto puede distenderse verticalmente. Estas mediciones permiten distinguir entre piel sana, cicatrices normales y cicatrices patológicas, [7]​ y el método se ha aplicado en entornos clínicos e industriales para controlar tanto las secuelas fisiopatológicas como los efectos de los tratamientos en la piel.

Véase también

[editar]

Referencias

[editar]
  1. Baumgart F. (2000). «Stiffness--an unknown world of mechanical science?». Injury (Elsevier) 31: 14-84. doi:10.1016/S0020-1383(00)80040-6. «“Stiffness” = “Load” divided by “Deformation”». 
  2. Martin Wenham (2001), «Stiffness and flexibility», 200 science investigations for young students, p. 126, ISBN 978-0-7619-6349-3 .
  3. Monleón Cremades, Salvador, Análisis de vigas, arcos, placas y láminas, Universidad Politécnica de Valencia, 1999, ISBN 84-7721-769-6
  4. V. GOPALAKRISHNAN and CHARLES F. ZUKOSKI; "Delayed flow in thermo-reversible colloidal gels"; Journal of Rheology; Society of Rheology, U.S.A.; July/August 2007; 51 (4): pp. 623–644.
  5. Chattopadhyay, S.; Raines, R. (agosto 2014). «Biomateriales basados en colágeno para la cicatrización de heridas». Biopolymers 101 (8): 821-833. PMC 4203321. PMID 24633807. doi:10.1002/bip.22486. 
  6. Graham, Helen K; McConnell, James C; Limbert, Georges; Sherratt, Michael J (Febrero 2019). «¿Cuán rígida es la piel?». Dermatología experimental 28: 4-9. doi:10.1111/exd.13826. 
  7. Nedelec, Bernadette; Correa, José; de Oliveira, Ana; LaSalle, Leo; Perrault, Isabelle (2014). «Longitudinal cuantificación longitudinal de cicatrices de quemaduras». Burns 40 (8): 1504-1512. PMID 24703337. doi:10.1016/j.burns.2014.03.002. 

Bibliografía

[editar]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy