Jump to content

Partitions of multisets

From Wikiversity
This article references
sequences from the OEIS.

Multisets have partitions just like normal sets. The following table shows how many of them a multiset corresponding to a particular integer partition has. Lists are linked from the table.

0
 
1
2
2
3
3
2,2
4
4
5
3,2
6
5
7
2,2,2
8
4,2
9
3,3
10
6
11
3,2,2
12
5,2
13
4,3
14
7
15
2,2,2,2
16
4,2,2
17
3,3,2
18
6,2
19
5,3
20
4,4
21
8
Σ
0 1 1
1 1 1
2 2 2 4
3 5 4 3 12
4 15 11 7 9 5 47
5 52 36 21 26 12 16 7 170
6 203 135 74 92 38 52 19 66 29 31 11 750
7 877 566 296 371 141 198 64 249 98 109 30 137 47 57 15 3255
8 4140 2610 1315 1663 592 850 250 1075 392 444 105 560 171 212 45 712 269 300 77 97 109 22 16010

triangle: A249620,        columns correspond to integer partitions (A194602),        row sums: A035310
col 0: A000110 (Bell),   col 1: A035098 (near-Bell),   col 2: A169587,        col 4: A169588        end−1: A091437,   end: A000041 (partition numbers)

Multisets by integer partition



Right columns

[edit | edit source]

The right columns give a reflection of the triangle A126442.
Columns: A000041(1...) − 1 = 0, 1, 2, 4, 6, 10, 14, 21...

0
 
1
2
2
3
4
4
6
5
10
6
14
7
21
8
Σ
1 1 1
2 2 2 4
3 5 4 3 12
4 15 11 7 5 38
5 52 36 21 12 7 128
6 203 135 74 38 19 11 480
7 877 566 296 141 64 30 15 1989
8 4140 2610 1315 592 250 105 45 22 9079

Row sums: 1, 4, 12, 38, 128, 480, 1989, 9079...
Main diagonal: 1, 4, 21, 141...
Diagonals on the right:
A000041 = 1, 2, 3, 5, 7, 11, 15, 22...
A000070 = 2, 4, 7, 12, 19, 30, 45...
A082775 = 5, 11, 21, 38, 64, 105...



Another triangle is mentioned in A126442 as the second of a series.
I guess that 3, 5, 8, 12... is supposed to be the sequence of integer partitions with two non-one addends, one of them being 2.
That would be the columns: A248374 = 3, 5, 8, 12, 18, 25, 36, 49, 67, 90, 121, 158...

3
2,2
5
3,2
8
4,2
12
5,2
18
6,2
Σ
4 9 9
5 26 16 42
6 92 52 29 173
7 371 198 98 47 714
8 1663 850 392 171 77 3153

Row sums: 9, 42, 173, 714, 3153...
Diagonals on the right:
A000291 = 9,16,29,47,77...
A002763 = 26,52,98,171...


Left columns

[edit | edit source]

Columns: A000041(1...) = 1, 2, 3, 5, 7, 11, 12...

1
2
2
3
3
2,2
5
3,2
7
2,2,2
11
3,2,2
15
2,2,2,2
Σ
2 2 2
3 4 3 7
4 11 7 9 27
5 36 21 26 16 99
6 135 74 92 52 66 419
7 566 296 371 198 249 137 1817
8 2610 1315 1663 850 1075 560 712 8785

Row sums: 2, 7, 27, 99, 419, 1817, 8785...
Main diagonal: 2, 7, 92, 850...


Second from right columns

[edit | edit source]

Columns: A000041(4...) − 2 = 3, 5, 9, 13, 20...

3
2,2
5
3,2
9
3,3
13
4,3
20
4,4
Σ
4 9 9
5 26 16 42
6 92 52 31 175
7 371 198 109 57 735
8 1663 850 444 212 109 3278

Row sums: 9,42,175,735,3278...
Main diagonal: 9, 52, 444...
Diagonal on the right: A091437 = 9, 16, 31, 57, 109...

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy