Jump to content

Template:Uniform tiles db

From Wikipedia, the free encyclopedia

{{{{{1}}}|{{{2}}}|

|Ub-name=Apeirogonal hosohedron |Ub-image=Apeirogonal hosohedron.svg| |Ub-image2=| |Ub-imagecaption= |Ub-vfigimage=| |Ub-dimage=Apeirogonal tiling.svg| |Ub-vfig=2| |Ub-ffig=V∞2| |Ub-Wythoff= ∞ | 2 2| |Ub-rotgroup=[∞,2]+, (∞22)| |Ub-group=[∞,2], (*∞22)| |Ub-special=| |Ub-B=?| |Ub-schl={2,∞}| |Ub-dual=Order-2 apeirogonal tiling |Ub-CD=

|Ua-name=Apeirogonal tiling |Ua-image=Apeirogonal tiling.svg| |Ua-image2=Apeirogonal tiling.svg| |Ua-imagecaption= |Ua-vfigimage=| |Ua-dimage=Apeirogonal hosohedron.svg| |Ua-vfig=∞.∞| |Ua-ffig=V2.2.2...| |Ua-Wythoff= 2 | ∞ 2
2 2 | ∞| |Ua-rotgroup=[∞,2]+, (∞22)| |Ua-group=[∞,2], (*∞22)| |Ua-special=| |Ua-B=?| |Ua-schl={∞,2}| |Ua-dual=Apeirogonal hosohedron |Ua-CD=

|Uainfin-name=Uniform apeirogonal antiprism| |Uainfin-image=Infinite antiprism.svg| |Uainfin-image2=Infinite antiprism.svg| |Uainfin-imagecaption= |Uainfin-vfigimage=Infinite antiprism verf.svg| |Uainfin-dimage=Apeirogonal dipyramid.svg| |Uainfin-vfig=3.3.3.∞| |Uainfin-Wythoff= | 2 2 ∞ |Uainfin-rotgroup=[∞,2]+, (∞22)| |Uainfin-group=[∞,2+], (∞22)| |Uainfin-special=| |Uainfin-B=Azap| |Uainfin-schl=sr{2,∞} or | |Uainfin-dual=Apeirogonal deltohedron| |Uainfin-CD=

|Uinfin-name=Apeirogonal prism| |Uinfin-image=Infinite_prism.svg| |Uinfin-image2=Infinite_prism.svg| |Uinfin-imagecaption= |Uinfin-vfigimage=Infinite prism verf.svg| |Uinfin-dimage=?| |Uinfin-vfig=4.4.∞| |Uinfin-Wythoff= 2 ∞ | 2 |Uinfin-rotgroup=[∞,2]+, (∞22)| |Uinfin-group=[∞,2], (*∞22)| |Uinfin-special=| |Uinfin-B=Azip| |Uinfin-schl=t{2,∞}| |Uinfin-dual=Apeirogonal bipyramid| |Uinfin-CD=

|Us-name=Square tiling| |Us-name2=quadrille| |Us-image=Tiling 4a simple.svg| |Us-image2=Uniform tiling 44-t0.png| |Us-imagecaption= |Us-vfigimage=Tiling 4a vertfig.svg| |Us-dfaceimage=Tiling 4a dual face.svg| |Us-dimage=Tiling 4b simple.svg| |Us-vfig=4.4.4.4 (or 44)| |Us-ffig=V4.4.4.4 (or V44)| |Us-Wythoff= 4 | 2 4 |Us-rotgroup=p4, [4,4]+, (442)| |Us-group=p4m, [4,4], (*442)| |Us-special=| |Us-B=Squat| |Us-schl={4,4}
{∞}×{∞}| |Us-dual=self-dual| |Us-dual2=quadrille| |Us-CD=




|Uts-name=Truncated square tiling| |Uts-name2=truncated quadrille| |Uts-image=Tiling truncated 4a simple.svg| |Uts-image2=Uniform tiling 44-t01.png| |Uts-imagecaption= |Uts-vfigimage=Tiling truncated 4a vertfig.svg| |Uts-dfaceimage=Tiling truncated 4a dual face.svg| |Uts-dimage=Tiling truncated 4a dual simple.svg| |Uts-vfig=4.8.8| |Uts-Wythoff= 2 | 4 4
4 4 2 || |Uts-rotgroup=p4, [4,4]+, (442)| |Uts-group=p4m, [4,4], (*442)| |Uts-special=| |Uts-B=Tosquat| |Uts-schl=t{4,4}
tr{4,4} or | |Uts-dual=Tetrakis square tiling| |Uts-dual2=kisquadrille| |Uts-CD=
or

|Uns-name=Snub square tiling| |Uns-name2=snub quadrille| |Uns-image=Tiling snub 4-4 left simple.svg| |Uns-image2=Uniform tiling 44-snub.png| |Uns-imagecaption= |Uns-vfigimage=Tiling snub 4-4 left vertfig.svg| |Uns-dfaceimage=Tiling snub 4-4 left dual face.svg| |Uns-dimage=Tiling snub 4-4 left dual simple.svg| |Uns-vfig=3.3.4.3.4| |Uns-Wythoff= | 4 4 2 | |Uns-rotgroup=p4, [4,4]+, (442)| |Uns-group=p4g, [4+,4], (4*2)| |Uns-special=| |Uns-B=Snasquat| |Uns-schl=s{4,4}
sr{4,4} or | |Uns-dual=Cairo pentagonal tiling| |Uns-dual2=4-fold pentille| |Uns-CD=
or

|Uh-name=Hexagonal tiling| |Uh-name2=hextille| |Uh-image=Tiling 6 simple.svg| |Uh-image2=Uniform tiling 63-t0.png| |Uh-imagecaption= |Uh-vfigimage=Tiling 6 vertfig.svg| |Uh-dfaceimage=Tiling 6 dual face.svg| |Uh-dimage=Tiling 3 simple.svg| |Uh-vfig=6.6.6 (or 63)| |Uh-ffig=V3.3.3.3.3.3 (or V36)| |Uh-Wythoff= 3 | 6 2
2 6 | 3
3 3 3 || |Uh-rotgroup=p6, [6,3]+, (632)| |Uh-group=p6m, [6,3], (*632)| |Uh-special=| |Uh-B=Hexat| |Uh-schl={6,3}
t{3,6}| |Uh-dual=Triangular tiling| |Uh-dual2=deltille| |Uh-CD=

|Ut-name=Triangular tiling| |Ut-name2=deltille| |Ut-image=Tiling 3 simple.svg| |Ut-image2=Uniform tiling 63-t2.png| |Ut-imagecaption= |Ut-vfigimage=Tiling 3 vertfig.svg| |Ut-dfaceimage=Tiling 3 dual face.svg| |Ut-dimage=Tiling 6 simple.svg| |Ut-vfig=3.3.3.3.3.3 (or 36)| |Ut-ffig=V6.6.6 (or V63)| |Ut-Wythoff= 6 | 3 2
3 | 3 3
| 3 3 3| |Ut-rotgroup=p6, [6,3]+, (632)
p3, [3[3]]+, (333)| |Ut-group=p6m, [6,3], (*632)| |Ut-special=| |Ut-B=Trat| |Ut-schl={3,6}
{3[3]}| |Ut-dual=Hexagonal tiling| |Ut-dual2=hextille| |Ut-CD=

=

|Uth-name=Truncated hexagonal tiling| |Uth-name2=truncated hextille| |Uth-image=Tiling truncated 6 simple.svg| |Uth-image2=Uniform tiling 63-t01.png| |Uth-imagecaption= |Uth-vfigimage=Tiling truncated 6 vertfig.svg| |Uth-dfaceimage=Tiling truncated 6 dual face.svg| |Uth-dimage=Tiling truncated 6 dual simple.svg| |Uth-vfig=3.12.12| |Uth-Wythoff= 2 3 | 6| |Uth-rotgroup=p6, [6,3]+, (632) |Uth-group=p6m, [6,3], (*632)| |Uth-special=| |Uth-B=Toxat| |Uth-schl=t{6,3}| |Uth-dual=Triakis triangular tiling| |Uth-dual2=kisdeltille| |Uth-CD=

|Uht-name=Trihexagonal tiling| |Uht-name2=hexadeltille| |Uht-image=Tiling 3-6 simple.svg| |Uht-image2=Uniform tiling 63-t1.png| |Uht-imagecaption= |Uht-vfigimage=Tiling 3-6 vertfig.svg| |Uht-dfaceimage=Tiling 3-6 dual face.svg| |Uht-dimage=Tiling 3-6 dual simple.svg| |Uht-vfig=(3.6)2| |Uht-Wythoff= 2 | 6 3
3 3 | 3| |Uht-rotgroup=p6, [6,3]+, (632)
p3, [3[3]]+, (333) |Uht-group=p6m, [6,3], (*632)| |Uht-special=Edge-transitive| |Uht-B=That| |Uht-schl=r{6,3} or
h2{6,3}| |Uht-dual=Rhombille tiling| |Uht-dual2=rhombille| |Uht-CD=
=

|Urth-name=Rhombitrihexagonal tiling| |Urth-name2=rhombihexadeltille| |Urth-image=Tiling small rhombi 3-6 simple.svg| |Urth-image2=Uniform tiling 63-t02.png| |Urth-imagecaption= |Urth-vfigimage=Tiling small rhombi 3-6 vertfig.svg| |Urth-dfaceimage=Tiling small rhombi 3-6 dual face.svg| |Urth-dimage=Tiling small rhombi 3-6 dual simple.svg| |Urth-vfig=3.4.6.4| |Urth-Wythoff= 3 | 6 2| |Urth-rotgroup=p6, [6,3]+, (632)| |Urth-group=p6m, [6,3], (*632)| |Urth-special=| |Urth-B=Rothat| |Urth-schl=rr{6,3} or | |Urth-dual=Deltoidal trihexagonal tiling| |Urth-dual2=tetrille| |Urth-CD=

|Ugrth-name=Truncated trihexagonal tiling| |Ugrth-name2=truncated hexadeltille| |Ugrth-image=Tiling great rhombi 3-6 simple.svg| |Ugrth-image2=Uniform tiling 63-t012.png| |Ugrth-imagecaption= |Ugrth-vfigimage=Tiling great rhombi 3-6 vertfig.svg| |Ugrth-dfaceimage=Tiling great rhombi 3-6 dual face.svg| |Ugrth-dimage=Tiling great rhombi 3-6 dual simple.svg| |Ugrth-vfig=4.6.12| |Ugrth-Wythoff= 2 6 3 || |Ugrth-rotgroup=p6, [6,3]+, (632)| |Ugrth-group=p6m, [6,3], (*632)| |Ugrth-special=| |Ugrth-B=Othat| |Ugrth-schl=tr{6,3} or | |Ugrth-dual=Kisrhombille tiling| |Ugrth-dual2=kisrhombille| |Ugrth-CD=

|Unh-name=Snub trihexagonal tiling| |Unh-name2=snub hextille| |Unh-image=Tiling snub 3-6 left simple.svg| |Unh-image2=Uniform tiling 63-snub.png| |Unh-imagecaption= |Unh-vfigimage=Tiling snub 3-6 left vertfig.svg| |Unh-dfaceimage=Tiling snub 3-6 left dual face.svg| |Unh-dimage=Tiling snub 3-6 left dual simple.svg| |Unh-vfig=3.3.3.3.6| |Unh-Wythoff= | 6 3 2| |Unh-rotgroup=p6, [6,3]+, (632)| |Unh-group=p6, [6,3]+, (632)| |Unh-special=chiral| |Unh-B=Snathat| |Unh-schl=sr{6,3} or | |Unh-dual=Floret pentagonal tiling| |Unh-dual2=6-fold pentille| |Unh-CD=

|Uet-name=Elongated triangular tiling| |Uet-name2=isosnub quadrille| |Uet-image=Tiling elongated 3 simple.svg| |Uet-imagecaption= |Uet-vfigimage=Tiling elongated 3 vertfig.svg| |Uet-dfaceimage=Tiling elongated 3 dual face.svg| |Uet-dimage=Tiling elongated 3 dual simple.svg| |Uet-vfig=3.3.3.4.4| |Uet-Wythoff= 2 | 2 (2 2)| |Uet-rotgroup=p2, [∞,2,∞]+, (2222)| |Uet-group=cmm, [∞,2+,∞], (2*22)| |Uet-special=| |Uet-B=Etrat| |Uet-schl={3,6}:e
s{∞}h1{∞}| |Uet-dual=Prismatic pentagonal tiling| |Uet-dual2=iso(4-)pentille| |Uet-CD=

}}

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy