Jump to content

Divisibility sequence

From Wikipedia, the free encyclopedia

In mathematics, a divisibility sequence is an integer sequence indexed by positive integers n such that

for all mn. That is, whenever one index is a multiple of another one, then the corresponding term also is a multiple of the other term. The concept can be generalized to sequences with values in any ring where the concept of divisibility is defined.

A strong divisibility sequence is an integer sequence such that for all positive integers mn,

Every strong divisibility sequence is a divisibility sequence: if and only if . Therefore, by the strong divisibility property, and therefore .

Examples

[edit]
  • Any constant sequence is a strong divisibility sequence.
  • Every sequence of the form for some nonzero integer k, is a divisibility sequence.
  • The numbers of the form (Mersenne numbers) form a strong divisibility sequence.
  • The repunit numbers in any base Rn(b) form a strong divisibility sequence.
  • More generally, any sequence of the form for integers is a divisibility sequence. In fact, if and are coprime, then this is a strong divisibility sequence.
  • The Fibonacci numbers Fn form a strong divisibility sequence.
  • More generally, any Lucas sequence of the first kind Un(P,Q) is a divisibility sequence. Moreover, it is a strong divisibility sequence when gcd(P,Q) = 1.
  • Elliptic divisibility sequences are another class of such sequences.

References

[edit]
  • Everest, Graham; van der Poorten, Alf; Shparlinski, Igor; Ward, Thomas (2003). Recurrence Sequences. American Mathematical Society. ISBN 978-0-8218-3387-2.
  • Hall, Marshall (1936). "Divisibility sequences of third order". Am. J. Math. 58 (3): 577–584. doi:10.2307/2370976. JSTOR 2370976.
  • Ward, Morgan (1939). "A note on divisibility sequences". Bull. Amer. Math. Soc. 45 (4): 334–336. doi:10.1090/s0002-9904-1939-06980-2.
  • Hoggatt, Jr., V. E.; Long, C. T. (1973). "Divisibility properties of generalized Fibonacci polynomials" (PDF). Fibonacci Quarterly: 113.
  • Bézivin, J.-P.; Pethö, A.; van der Porten, A. J. (1990). "A full characterization of divisibility sequences". Am. J. Math. 112 (6): 985–1001. doi:10.2307/2374733. JSTOR 2374733.
  • P. Ingram; J. H. Silverman (2012), "Primitive divisors in elliptic divisibility sequences", in Dorian Goldfeld; Jay Jorgenson; Peter Jones; Dinakar Ramakrishnan; Kenneth A. Ribet; John Tate (eds.), Number Theory, Analysis and Geometry. In Memory of Serge Lang, Springer, pp. 243–271, ISBN 978-1-4614-1259-5
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy