Jump to content

210 (number)

From Wikipedia, the free encyclopedia
← 209 210 211 →
Cardinaltwo hundred ten
Ordinal210th
(two hundred tenth)
Factorization2 × 3 × 5 × 7
Divisors1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210
Greek numeralΣΙ´
Roman numeralCCX, ccx
Binary110100102
Ternary212103
Senary5506
Octal3228
Duodecimal15612
HexadecimalD216

210 (two hundred [and] ten) is the natural number following 209 and preceding 211.

Mathematics

[edit]

210 is an abundant number,[1] and Harshad number. It is the product of the first four prime numbers (2, 3, 5, and 7), and thus a primorial,[2] where it is the least common multiple of these four prime numbers. 210 is the first primorial number greater than 2 which is not adjacent to 2 primes (211 is prime, but 209 is not).

It is the sum of eight consecutive prime numbers, between 13 and the thirteenth prime number: 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 = 210.[3]

It is the 20th triangular number (following 190 and preceding 231),[4] a pentagonal number (following 176 and preceding 247), and the second smallest to be both triangular and pentagonal (the third is 40755).[3]

It is also an idoneal number, a pentatope number, a pronic number, and an untouchable number. 210 is also the third 71-gonal number, preceding 418.[3]

210 is index n = 7 in the number of ways to pair up {1, ..., 2n} so that the sum of each pair is prime; i.e., in {1, ..., 14}.[5][6]

It is the largest number n where the number of distinct representations of n as the sum of two primes is at most the number of primes in the interval [n/2 , n − 2].[7]

References

[edit]
  1. ^ Sloane, N. J. A. (ed.). "Sequence A005101 (Abundant numbers (sum of divisors of m exceeds 2m).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-02-10.
  2. ^ Sloane, N. J. A. (ed.). "Sequence A002110 (Primorial numbers (first definition): product of first n primes. Sometimes written prime(n)#.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-02-10.
  3. ^ a b c Wells, D. (1987). The Penguin Dictionary of Curious and Interesting Numbers (p. 143). London: Penguin Group.
  4. ^ "A000217 - OEIS". oeis.org. Retrieved 2024-11-28.
  5. ^ Sloane, N. J. A. (ed.). "Sequence A000341 (Number of ways to pair up {1..2n} so sum of each pair is prime.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-02-10.
  6. ^ Greenfield, Lawrence E.; Greenfield, Stephen J. (1998). "Some Problems of Combinatorial Number Theory Related to Bertrand's Postulate". Journal of Integer Sequences. 1. Waterloo, ON: David R. Cheriton School of Computer Science: Article 98.1.2. MR 1677070. S2CID 230430995. Zbl 1010.11007.
  7. ^ Deshouillers, Jean-Marc; Granville, Andrew; Narkiewicz, Władysław; Pomerance, Carl (1993). "An upper bound in Goldbach's problem". Mathematics of Computation. 61 (203): 209–213. Bibcode:1993MaCom..61..209D. doi:10.1090/S0025-5718-1993-1202609-9.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy