Abstract
We introduce far-field fluorescence nanoscopy with ordinary fluorophores based on switching the majority of them to a metastable dark state, such as the triplet, and calculating the position of those left or those that spontaneously returned to the ground state. Continuous widefield illumination by a single laser and a continuously operating camera yielded dual-color images of rhodamine- and fluorescent protein–labeled (living) samples, proving a simple yet powerful super-resolution approach.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Hell, S.W. & Wichmann, J. Opt. Lett. 19, 780–782 (1994).
Hell, S.W. & Kroug, M. Appl. Phys. B 60, 495–497 (1995).
Bretschneider, S., Eggeling, C. & Hell, S.W. Phys. Rev. Lett. 98, 218103 (2007).
Heintzmann, R., Jovin, T.M. & Cremer, C. J. Opt. Soc. Am. A 19, 1599–1609 (2002).
Gustafsson, M.G.L. Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
Hell, S.W., Jakobs, S. & Kastrup, L. Appl. Phys. A 77, 859–860 (2003).
Hell, S.W. Science 316, 1153–1158 (2007).
Betzig, E. et al. Science 313, 1642–1645 (2006).
Hess, S.T., Girirajan, T.P.K. & Mason, M.D. Biophys. J. 91, 4258–4272 (2006).
Rust, M.J., Bates, M. & Zhuang, X. Nat. Methods 3, 793–796 (2006).
Heisenberg, W. The Physical Principles of the Quantum Theory. (University of Chicago Press, Chicago, 1930).
Fölling, J. et al. Angew. Chem. Int. Ed. 46, 6266–6270 (2007).
Bock, H. et al. Appl. Phys. B 88, 161–165 (2007).
Heilemann, M. et al. Angew. Chem. 47, 6172–6176 (2008).
Zondervan, R., Kulzer, F., Orlinskii, S.B. & Orrit, M. J. Phys. Chem. A 107, 6770–6776 (2003).
Bossi, M. et al. Nano Lett. 8, 2463–2468 (2008).
Dickson, R.M., Cubitt, A.B., Tsien, R.Y. & Moerner, W.E. Nature 388, 355–358 (1997).
Acknowledgements
We thank A. Egner and A. Schönle for support with the instrumentation and data evaluation software and for valuable discussions, R.Y. Tsien (University of California, San Diego) for providing the plasmid coding for fluorescent proteins, V.N. Belov (Max Planck Institute for Biophysical Chemistry, Göttingen) for supplying the rhodamine dyes Rh-sart3b and Rh-sart3f, R. Schmitz-Salue and S. Löbermann for excellent technical assistance, S. Sahl for help with the experiments, and B. Rankin and J. Jethwa for carefully reading the manuscript.
Author information
Authors and Affiliations
Corresponding authors
Supplementary information
Supplementary Text and Figures
Supplementary Figure 1, Supplementary Table 1, Supplementary Methods (PDF 227 kb)
Rights and permissions
About this article
Cite this article
Fölling, J., Bossi, M., Bock, H. et al. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5, 943–945 (2008). https://doi.org/10.1038/nmeth.1257
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmeth.1257
This article is cited by
-
Scanning single molecule localization microscopy (scanSMLM) for super-resolution volume imaging
Communications Biology (2023)
-
Temporally resolved SMLM (with large PAR shift) enabled visualization of dynamic HA cluster formation and migration in a live cell
Scientific Reports (2023)
-
Phase intensity nanoscope (PINE) opens long-time investigation windows of living matter
Nature Communications (2023)
-
Transmission structured illumination microscopy with tunable frequency illumination using tilt mirror assembly
Scientific Reports (2023)
-
OregonFluor enables quantitative intracellular paired agent imaging to assess drug target availability in live cells and tissues
Nature Chemistry (2023)