About the Project
22 Jacobian Elliptic FunctionsProperties

§22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series

With t and

22.12.1 τ=iK(k)/K(k),
22.12.2 2Kksn(2Kt,k)=n=πsin(π(t(n+12)τ))=n=(m=(1)mtm(n+12)τ),
22.12.3 2iKkcn(2Kt,k)=n=(1)nπsin(π(t(n+12)τ))=n=(m=(1)m+ntm(n+12)τ),
22.12.4 2iKdn(2Kt,k)=limNn=NN(1)nπtan(π(t(n+12)τ))=limNn=NN(1)n(limMm=MM1tm(n+12)τ).

The double sums in (22.12.2)–(22.12.4) are convergent but not absolutely convergent, hence the order of the summations is important. Compare §20.5(iii).

22.12.5 2Kkcd(2Kt,k) =n=πsin(π(t+12(n+12)τ))=n=(m=(1)mt+12m(n+12)τ),
22.12.6 2iKkksd(2Kt,k) =n=(1)nπsin(π(t+12(n+12)τ))=n=(m=(1)m+nt+12m(n+12)τ),
22.12.7 2iKknd(2Kt,k) =limNn=NN(1)nπtan(π(t+12(n+12)τ))=limNn=NN(1)nlimM(m=MM1t+12m(n+12)τ),
22.12.8 2Kdc(2Kt,k) =n=πsin(π(t+12nτ))=n=(m=(1)mt+12mnτ),
22.12.9 2Kknc(2Kt,k) =n=(1)nπsin(π(t+12nτ))=n=(m=(1)m+nt+12mnτ),
22.12.10 2Kksc(2Kt,k) =limNn=NN(1)nπtan(π(t+12nτ))=limNn=NN(1)n(limMm=MM1t+12mnτ),
22.12.11 2Kns(2Kt,k) =n=πsin(π(tnτ))=n=(m=(1)mtmnτ),
22.12.12 2Kds(2Kt,k) =n=(1)nπsin(π(tnτ))=n=(m=(1)m+ntmnτ),
22.12.13 2Kcs(2Kt,k) =limNn=NN(1)nπtan(π(tnτ))=limNn=NN(1)n(limMm=MM1tmnτ).
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy