Property |
Value |
dbo:abstract
|
- Dans un espace euclidien orienté de dimension , le tenseur de Levi-Civita – ou tenseur dualiseur – est le tenseur dont les coordonnées dans une base orthonormale directe sont données par le symbole de Levi-Civita d'ordre N. En effet, le symbole de Levi-Civita d'ordre N ou (aussi appelé pseudo-tenseur unité complètement antisymétrique) n'est pas un tenseur. Par exemple, ses composantes devraient être multipliées par lorsque le système de coordonnées est réduit d'un facteur 2. (fr)
- Dans un espace euclidien orienté de dimension , le tenseur de Levi-Civita – ou tenseur dualiseur – est le tenseur dont les coordonnées dans une base orthonormale directe sont données par le symbole de Levi-Civita d'ordre N. En effet, le symbole de Levi-Civita d'ordre N ou (aussi appelé pseudo-tenseur unité complètement antisymétrique) n'est pas un tenseur. Par exemple, ses composantes devraient être multipliées par lorsque le système de coordonnées est réduit d'un facteur 2. (fr)
|
dbo:basedOn
| |
dbo:namedAfter
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 8616 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- Dans un espace euclidien orienté de dimension , le tenseur de Levi-Civita – ou tenseur dualiseur – est le tenseur dont les coordonnées dans une base orthonormale directe sont données par le symbole de Levi-Civita d'ordre N. En effet, le symbole de Levi-Civita d'ordre N ou (aussi appelé pseudo-tenseur unité complètement antisymétrique) n'est pas un tenseur. Par exemple, ses composantes devraient être multipliées par lorsque le système de coordonnées est réduit d'un facteur 2. (fr)
- Dans un espace euclidien orienté de dimension , le tenseur de Levi-Civita – ou tenseur dualiseur – est le tenseur dont les coordonnées dans une base orthonormale directe sont données par le symbole de Levi-Civita d'ordre N. En effet, le symbole de Levi-Civita d'ordre N ou (aussi appelé pseudo-tenseur unité complètement antisymétrique) n'est pas un tenseur. Par exemple, ses composantes devraient être multipliées par lorsque le système de coordonnées est réduit d'un facteur 2. (fr)
|
rdfs:label
|
- Tenseur de Levi-Civita (fr)
- Tenseur de Levi-Civita (fr)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |