An Entity of Type: Person100007846, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In number theory, Maier's theorem is a theorem about the numbers of primes in short intervals for which Cramér's probabilistic model of primes gives a wrong answer. The theorem states that if π is the prime-counting function and λ is greater than 1 then does not have a limit as x tends to infinity; more precisely the limit superior is greater than 1, and the limit inferior is less than 1. The Cramér model of primes predicts incorrectly that it has limit 1 when λ≥2 (using the Borel–Cantelli lemma).

Property Value
dbo:abstract
  • In number theory, Maier's theorem is a theorem about the numbers of primes in short intervals for which Cramér's probabilistic model of primes gives a wrong answer. The theorem states that if π is the prime-counting function and λ is greater than 1 then does not have a limit as x tends to infinity; more precisely the limit superior is greater than 1, and the limit inferior is less than 1. The Cramér model of primes predicts incorrectly that it has limit 1 when λ≥2 (using the Borel–Cantelli lemma). (en)
  • Inom talteori är Maiers sats, bevisad av 1985, en sats om primtal i korta intervall. Satsen säger att om π är primtalsfunktionen och λ är större än 1 saknar ett gränsvärde då x närmar sig oändlighet. (sv)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 22084488 (xsd:integer)
dbo:wikiPageLength
  • 2884 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1034886013 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In number theory, Maier's theorem is a theorem about the numbers of primes in short intervals for which Cramér's probabilistic model of primes gives a wrong answer. The theorem states that if π is the prime-counting function and λ is greater than 1 then does not have a limit as x tends to infinity; more precisely the limit superior is greater than 1, and the limit inferior is less than 1. The Cramér model of primes predicts incorrectly that it has limit 1 when λ≥2 (using the Borel–Cantelli lemma). (en)
  • Inom talteori är Maiers sats, bevisad av 1985, en sats om primtal i korta intervall. Satsen säger att om π är primtalsfunktionen och λ är större än 1 saknar ett gränsvärde då x närmar sig oändlighet. (sv)
rdfs:label
  • Maier's theorem (en)
  • Maiers sats (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy