An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In geometry, the Killing–Hopf theorem states that complete connected Riemannian manifolds of constant curvature are isometric to a quotient of a sphere, Euclidean space, or hyperbolic space by a group acting freely and properly discontinuously. These manifolds are called space forms. The Killing–Hopf theorem was proved by Killing and Hopf.

Property Value
dbo:abstract
  • In geometry, the Killing–Hopf theorem states that complete connected Riemannian manifolds of constant curvature are isometric to a quotient of a sphere, Euclidean space, or hyperbolic space by a group acting freely and properly discontinuously. These manifolds are called space forms. The Killing–Hopf theorem was proved by Killing and Hopf. (en)
  • Inom matematiken är Killing–Hopfs sats ett resultat som säger att en fullständig sammanhängande Riemannmångfald av konstant krökning är isometrisk till ett av en sfär, ett Euklidiskt rum eller ett med en grupp som verkar fritt och . Dessa mångfalder är kända som . Killing–Hopfs sats bevisades av Killing och Hopf. (sv)
dbo:wikiPageID
  • 37711150 (xsd:integer)
dbo:wikiPageLength
  • 1298 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1053923079 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In geometry, the Killing–Hopf theorem states that complete connected Riemannian manifolds of constant curvature are isometric to a quotient of a sphere, Euclidean space, or hyperbolic space by a group acting freely and properly discontinuously. These manifolds are called space forms. The Killing–Hopf theorem was proved by Killing and Hopf. (en)
  • Inom matematiken är Killing–Hopfs sats ett resultat som säger att en fullständig sammanhängande Riemannmångfald av konstant krökning är isometrisk till ett av en sfär, ett Euklidiskt rum eller ett med en grupp som verkar fritt och . Dessa mångfalder är kända som . Killing–Hopfs sats bevisades av Killing och Hopf. (sv)
rdfs:label
  • Killing–Hopf theorem (en)
  • Killing–Hopfs sats (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy