An Entity of Type: Function113783816, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematical analysis, the Bessel–Clifford function, named after Friedrich Bessel and William Kingdon Clifford, is an entire function of two complex variables that can be used to provide an alternative development of the theory of Bessel functions. If is the entire function defined by means of the reciprocal gamma function, then the Bessel–Clifford function is defined by the series

Property Value
dbo:abstract
  • En anàlisi matemàtica, la funció de Bessel–Clifford, anomenada en honor de Friedrich Bessel i William Kingdon Clifford, és una funció entera de dues variables complexes que es pot usar per proveir un desenvolupament alternatiu en la teoria de les funcions de Bessel. Si és la funció entera definida mitjançant la funció gamma recíproca, llavors la funció de Bessel–Clifford es defineix com la sèrie: La raó de termes successius és z/k(n + k), que per tot valor de z i n tendeix a zero a mesura que s'incrementa la k. Segons el criteri de d'Alembert, aquesta sèrie convergeix absolutament per tot z i n, i uniformament per totes les regions amb |z| delimitat, i per tant la funció de Bessel–Clifford és una funció entera de les dues variables complexes n i z. (ca)
  • In mathematical analysis, the Bessel–Clifford function, named after Friedrich Bessel and William Kingdon Clifford, is an entire function of two complex variables that can be used to provide an alternative development of the theory of Bessel functions. If is the entire function defined by means of the reciprocal gamma function, then the Bessel–Clifford function is defined by the series The ratio of successive terms is z/k(n + k), which for all values of z and n tends to zero with increasing k. By the ratio test, this series converges absolutely for all z and n, and uniformly for all regions with bounded |z|, and hence the Bessel–Clifford function is an entire function of the two complex variables n and z. (en)
dbo:wikiPageID
  • 5930192 (xsd:integer)
dbo:wikiPageLength
  • 6832 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1006491586 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • En anàlisi matemàtica, la funció de Bessel–Clifford, anomenada en honor de Friedrich Bessel i William Kingdon Clifford, és una funció entera de dues variables complexes que es pot usar per proveir un desenvolupament alternatiu en la teoria de les funcions de Bessel. Si és la funció entera definida mitjançant la funció gamma recíproca, llavors la funció de Bessel–Clifford es defineix com la sèrie: (ca)
  • In mathematical analysis, the Bessel–Clifford function, named after Friedrich Bessel and William Kingdon Clifford, is an entire function of two complex variables that can be used to provide an alternative development of the theory of Bessel functions. If is the entire function defined by means of the reciprocal gamma function, then the Bessel–Clifford function is defined by the series (en)
rdfs:label
  • Funció de Bessel-Clifford (ca)
  • Bessel–Clifford function (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy