Relaxin is a peptide hormone best known for its action during the latter half of pregnancy, in particular for its softening effect on pelvic ligaments that aids in preparation of the birth canal for the impending delivery of the fetus. The source of relaxin during early pregnancy varies across species, with the CL being the main source in a number of species. The main source of relaxin during late equine pregnancy is the placenta. In mares with impaired placental function, circulating relaxin levels decline before abortion. During early pregnancy, relaxin promotes endometrial angiogenesis through upregulating endometrial expression of vascular endothelial growth factor. The horse is unique in that the equine conceptus expresses relaxin messenger RNA as early as 8 days after ovulation, with levels increasing as conceptus development proceeds. Although secretion of functional relaxin has not been verified, it is likely, given that the embryo also expresses transcripts coding for enzymes processing the prohormone to yield the mature hormone. Furin, an enzyme which belongs to the subtilisin-like proprotein convertase family known to process preprorelaxin, appears to be the foremost convertase expressed by equine conceptuses. Conceptus-derived relaxin could drive endometrial angiogenesis and also act in an autocrine fashion to promote the embryo's own development. Relaxin is also expressed by ovarian structures during the nonpregnant estrous cycle. In the mare, follicular expression of relaxin is comparable among follicles of varying size and has been localized to granulosa and theca cells. In women and pigs, relaxin appears to promote follicular development. In the rat, multiple lines of evidence indicate that relaxin is involved in the ovulatory process. In the mare, relaxin might play a similar role in the ovulatory process, as in equine ovarian stromal cells relaxin promotes the secretion of gelatinases and tissue inhibitors of metalloproteinases; local proteolysis of the follicular wall is integral to the ovulatory process. However, functional studies addressing the role of relaxin in the ovulatory process are missing in the mare.
Keywords: Angiogenesis; Contractility; Embryo; Equine; Pregnancy; Relaxin.
Copyright © 2016 Elsevier Inc. All rights reserved.