Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cross-ancestry and sex-stratified genome-wide association analyses of amygdala and subnucleus volumes

Abstract

The amygdala is a small but critical multi-nucleus structure for emotion, cognition and neuropsychiatric disorders. Although genetic associations with amygdala volumetric traits have been investigated in sex-combined European populations, cross-ancestry and sex-stratified analyses are lacking. Here we conducted cross-ancestry and sex-stratified genome-wide association analyses for 21 amygdala volumetric traits in 6,923 Chinese and 48,634 European individuals. We identified 191 variant–trait associations (P < 2.38 × 10−9), including 47 new associations (12 new loci) in sex-combined univariate analyses and seven additional new loci in sex-combined and sex-stratified multivariate analyses. We identified 12 ancestry-specific and two sex-specific associations. The identified genetic variants include 16 fine-mapped causal variants and regulate amygdala and fetal brain gene expression. The variants were enriched for brain development and colocalized with mood, cognition and neuropsychiatric disorders. These results indicate that cross-ancestry and sex-stratified genetic association analyses may provide insight into the genetic architectures of amygdala and subnucleus volumes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic discovery of amygdala volumetric traits in sex-combined univariate GWASs.
Fig. 2: New genetic discovery of amygdala volumetric traits in sex-combined GWASs.
Fig. 3: Genetic discovery in sex-stratified GWASs and allelic-effect heterogeneity.
Fig. 4: Fine-mapping of locus–trait associations identified by sex-combined univariate GWASs for amygdala volumetric traits.
Fig. 5: Functional annotations of genetic variants associated with amygdala and subnucleus volumes.

Similar content being viewed by others

Data availability

GWAS summary statistics for M-Bi in 13,160 ENIGMA participants were downloaded from https://enigma.ini.usc.edu. Summary statistics for sex-combined and sex-stratified univariate EAS-GWASs, EUR-GWASs and cross-ancestry GWAS meta-analyses are available in the NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/home) under accession numbers GCST90474869–GCST90475057. Additional statistics, including sex-combined and sex-stratified multivariate EAS-GWASs, EUR-GWASs and cross-ancestry GWAS meta-analyses as well as univariate EUR-GWAS meta-analysis and cross-ancestry meta-analysis with 55,557 samples for M-Bi are accessible via figshare (https://doi.org/10.6084/m9.figshare.27933333.v1)117. The cis-eQTL data of fetal brain samples were derived from previously published work65 (https://doi.org/10.1186/s13059-018-1567-1). The variants were mapped to the GRCh37 assembly using the chain file available at https://hgdownload.soe.ucsc.edu/goldenPath/hg38/liftOver/hg38ToHg19.over.chain.gz. GWAS summary statistics of brain-related phenotypes used in this study are available in the MRC Integrative Epidemiology Unit (IEU) OpenGWAS database (https://gwas.mrcieu.ac.uk).

Code availability

The code for analysis in this paper is accessible on Zenodo (https://doi.org/10.5281/zenodo.14272663)118 and the software used in this study is publicly available. The sMRI process and amygdala and subnucleus segmentation were performed using FreeSurfer (v.7.1.1) (https://surfer.nmr.mgh.harvard.edu) and harmonization was conducted using Combat harmonization (v.1.0.1) (https://github.com/Jfortin1/ComBatHarmonization). Outliers were detected by isolation forest (https://ww2.mathworks.cn/help/stats/isolationforest.html). Genetic data processing involved PLINK (v.2.0) (http://zzz.bwh.harvard.edu/plink), SHAPEIT2 (v.2.r904) (https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html), IMPUTE2 (v.2.3.2) (http://mathgen.stats.ox.ac.uk/impute/impute_v2.html) and qctool (v.2) (https://www.well.ox.ac.uk/~gav/qctool_v2). The R package ukbtools (v.0.11.3) (https://kenhanscombe.github.io/ukbtools) was used to estimate the relatedness of UKB participants. Univariate GWASs were performed using BGENIE (v.1.3) (https://jmarchini.org/bgenie) and multivariate GWASs were performed using C-GWAS (v.0.9.3) (https://github.com/Fun-Gene/CGWAS). Cross-ancestry meta-analyses were conducted using METASOFT (v.2.0.0) (http://genetics.cs.ucla.edu/meta). EAS-GWAS summary statistics were also obtained using MAMA (v.1.0.0) (https://github.com/JonJala/mama) by combining EAS-GWAS and EUR-GWAS summary statistics. The post-GWAS analyses mainly involved LDSC (v.1.0.1) (https://github.com/bulik/ldsc), Popcorn (v.1.0) (https://github.com/brielin/Popcorn), FINEMAP (v.1.4.1) (http://www.christianbenner.com/), Ensembl VEP tool (v.110) (http://www.ensembl.org/info/docs/tools/vep/index.html), ToppGene (v.1.0.0) (https://toppgene.cchmc.org), LiftOver (Jan.2022 release, https://genome.ucsc.edu/cgi-bin/hgLiftOver), SMR (v.1.3.1) (https://yanglab.westlake.edu.cn/software/smr/), coloc (v.5.1.0) (https://chr1swallace.github.io/coloc/index.html), gwasglue (v.0.0.0.9000) (https://mrcieu.github.io/gwasglue) and PRSice-2 (v.2.3.5) (https://github.com/choishingwan/PRSice). All statistical analyses in this study were conducted using R (v.4.3.1) (https://www.r-project.org) and Python (v.3.11.4) (https://www.python.org).

References

  1. Amunts, K. et al. Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat. Embryol. (Berl.) 210, 343–352 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Janak, P. H. & Tye, K. M. From circuits to behaviour in the amygdala. Nature 517, 284–292 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burghy, C. A. et al. Developmental pathways to amygdala–prefrontal function and internalizing symptoms in adolescence. Nat. Neurosci. 15, 1736–1741 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bickart, K. C., Dickerson, B. C. & Barrett, L. F. The amygdala as a hub in brain networks that support social life. Neuropsychologia 63, 235–248 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Haruno, M. & Frith, C. D. Activity in the amygdala elicited by unfair divisions predicts social value orientation. Nat. Neurosci. 13, 160–161 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Young, K. D. et al. Real-time functional magnetic resonance imaging amygdala neurofeedback changes positive information processing in major depressive disorder. Biol. Psychiatry 82, 578–586 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Adhikari, A. et al. Basomedial amygdala mediates top-down control of anxiety and fear. Nature 527, 179–185 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Milham, M. P. et al. Selective reduction in amygdala volume in pediatric anxiety disorders: a voxel-based morphometry investigation. Biol. Psychiatry 57, 961–966 (2005).

    Article  PubMed  Google Scholar 

  9. Likhtik, E., Stujenske, J. M., Topiwala, M. A., Harris, A. Z. & Gordon, J. A. Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat. Neurosci. 17, 106–113 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Qin, S. et al. Amygdala subregional structure and intrinsic functional connectivity predicts individual differences in anxiety during early childhood. Biol. Psychiatry 75, 892–900 (2014).

    Article  PubMed  Google Scholar 

  11. Pinkham, A. E. et al. Amygdala hyperactivity at rest in paranoid individuals with schizophrenia. Am. J. Psychiatry 172, 784–792 (2015).

    Article  PubMed  Google Scholar 

  12. Okada, N. et al. Abnormal asymmetries in subcortical brain volume in schizophrenia. Mol. Psychiatry 21, 1460–1466 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pantazopoulos, H., Wiseman, J. T., Markota, M., Ehrenfeld, L. & Berretta, S. Decreased numbers of somatostatin-expressing neurons in the amygdala of subjects with bipolar disorder or schizophrenia: relationship to circadian rhythms. Biol. Psychiatry 81, 536–547 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Qin, Y. et al. Polygenic risk for autism spectrum disorder affects left amygdala activity and negative emotion in schizophrenia. Transl. Psychiatry 10, 322 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Barth, C. et al. In vivo amygdala nuclei volumes in schizophrenia and bipolar disorders. Schizophr. Bull. 47, 1431–1441 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mattsson, N. et al. Predicting diagnosis and cognition with 18F-AV-1451 tau PET and structural MRI in Alzheimer’s disease. Alzheimers Dement. 15, 570–580 (2019).

    Article  PubMed  Google Scholar 

  17. Pan, D. et al. Deep learning for brain MRI confirms patterned pathological progression in Alzheimer’s Disease. Adv. Sci. (Weinh.) 10, e2204717 (2023).

    PubMed  Google Scholar 

  18. Batista, S. et al. Impairment of social cognition in multiple sclerosis: amygdala atrophy is the main predictor. Mult. Scler. 23, 1358–1366 (2017).

    Article  PubMed  Google Scholar 

  19. Saygin, Z. M. et al. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas. Neuroimage 155, 370–382 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Smith, S. M. et al. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat. Neurosci. 24, 737–745 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Elliott, L. T. et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562, 210–216 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hibar, D. P. et al. Common genetic variants influence human subcortical brain structures. Nature 520, 224–229 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Satizabal, C. L. et al. Genetic architecture of subcortical brain structures in 38,851 individuals. Nat. Genet. 51, 1624–1636 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ou, Y. N. et al. The genetic architecture of human amygdala volumes and their overlap with common brain disorders. Transl. Psychiatry 13, 90 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mufford, M. S. et al. The genetic architecture of amygdala nuclei. Biol. Psychiatry 95, 72–84 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. Keinan, A., Mullikin, J. C., Patterson, N. & Reich, D. Measurement of the human allele frequency spectrum demonstrates greater genetic drift in East Asians than in Europeans. Nat. Genet. 39, 1251–1255 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Butovskaya, P. R. et al. Polymorphisms of two loci at the oxytocin receptor gene in populations of Africa, Asia and South Europe. BMC Genet. 17, 17 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hindorff, L. A. et al. Prioritizing diversity in human genomics research. Nat. Rev. Genet. 19, 175–185 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, J. et al. Allelic variation at 5-HTTLPR is associated with brain morphology in a Chinese population. Psychiatry Res. 226, 399–402 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Cosgrove, K. P., Mazure, C. M. & Staley, J. K. Evolving knowledge of sex differences in brain structure, function, and chemistry. Biol. Psychiatry 62, 847–855 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dennison, M. et al. Mapping subcortical brain maturation during adolescence: evidence of hemisphere- and sex-specific longitudinal changes. Dev. Sci. 16, 772–791 (2013).

    Article  PubMed  Google Scholar 

  32. Kaczkurkin, A. N., Raznahan, A. & Satterthwaite, T. D. Sex differences in the developing brain: insights from multimodal neuroimaging. Neuropsychopharmacology 44, 71–85 (2019).

    Article  PubMed  Google Scholar 

  33. Gruene, T. M., Roberts, E., Thomas, V., Ronzio, A. & Shansky, R. M. Sex-specific neuroanatomical correlates of fear expression in prefrontal–amygdala circuits. Biol. Psychiatry 78, 186–193 (2015).

    Article  PubMed  Google Scholar 

  34. Kaczkurkin, A. N. et al. Elevated amygdala perfusion mediates developmental sex differences in trait anxiety. Biol. Psychiatry 80, 775–785 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Morr, M. et al. Lonely in the dark: trauma memory and sex-specific dysregulation of amygdala reactivity to fear signals. Adv. Sci. (Weinh.) 9, e2105336 (2022).

    PubMed  Google Scholar 

  36. Radulescu, E. et al. Effect of schizophrenia risk-associated alleles in SREB2 (GPR85) on functional MRI phenotypes in healthy volunteers. Neuropsychopharmacology 38, 341–349 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xu, Q. et al. CHIMGEN: a Chinese imaging genetics cohort to enhance cross-ethnic and cross-geographic brain research. Mol. Psychiatry 25, 517–529 (2020).

    Article  PubMed  Google Scholar 

  39. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nebert, D. W. & Liu, Z. SLC39A8 gene encoding a metal ion transporter: discovery and bench to bedside. Hum. Genomics 13, 51 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Brown, B. C., Asian Genetic Epidemiology Network Type 2 Diabetes Consortium, Ye, C. J., Price, A. L. & Zaitlen, N. Transethnic genetic-correlation estimates from summary statistics. Am. J. Hum. Genet. 99, 76–88 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xiong, Z. et al. Combining genome-wide association studies highlight novel loci involved in human facial variation. Nat. Commun. 13, 7832 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Patrick, T. et al. Multi-ancestry meta-analysis yields novel genetic discoveries and ancestry-specific associations. Preprint at https://doi.org/10.1101/2021.04.23.441003 (2021).

  45. Pereira, T. V., Patsopoulos, N. A., Salanti, G. & Ioannidis, J. P. A. Critical interpretation of Cochran’s Q test depends on power and prior assumptions about heterogeneity. Res. Synth. Methods 1, 149–161 (2010).

    Article  PubMed  Google Scholar 

  46. Choucair, N., Rajab, M., Megarbane, A. & Chouery, E. Homozygous microdeletion of the ERI1 and MFHAS1 genes in a patient with intellectual disability, limb abnormalities, and cardiac malformation. Am. J. Med. Genet. A 173, 1955–1960 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Guo, L. et al. Null and missense mutations of ERI1 cause a recessive phenotypic dichotomy in humans. Am. J. Hum. Genet. 110, 1068–1085 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Coultas, L. et al. Hrk/DP5 contributes to the apoptosis of select neuronal populations but is dispensable for haematopoietic cell apoptosis. J. Cell Sci. 120, 2044–2052 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. McLaren, W. et al. The Ensembl variant effect predictor. Genome Biol. 17, 122 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Consortium, G. T. Human genomics. The Genotype–Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    Article  Google Scholar 

  52. Newbern, J. et al. Mouse and human phenotypes indicate a critical conserved role for ERK2 signaling in neural crest development. Proc Natl Acad Sci USA 105, 17115–17120 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhu, G., Herlyn, M. & Yang, X. TRIM15 and CYLD regulate ERK activation via lysine-63-linked polyubiquitination. Nat. Cell Biol. 23, 978–991 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Focking, M. et al. Proteomic and genomic evidence implicates the postsynaptic density in schizophrenia. Mol. Psychiatry 20, 424–432 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Liu, J. et al. Genome-wide Mendelian randomization identifies actionable novel drug targets for psychiatric disorders. Neuropsychopharmacology 48, 270–280 (2023).

    Article  PubMed  Google Scholar 

  56. Connacher, R. et al. Autism NPCs from both idiopathic and CNV 16p11.2 deletion patients exhibit dysregulation of proliferation and mitogenic responses. Stem Cell Rep. 17, 1380–1394 (2022).

    Article  CAS  Google Scholar 

  57. Kumar, R. A. et al. Association and mutation analyses of 16p11.2 autism candidate genes. PLoS ONE 4, e4582 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hong, S. et al. Genome-wide association study of Alzheimer’s disease CSF biomarkers in the EMIF-AD Multimodal Biomarker Discovery dataset. Transl. Psychiatry 10, 403 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jansen, I. E. et al. Genome-wide meta-analysis for Alzheimer’s disease cerebrospinal fluid biomarkers. Acta Neuropathol. 144, 821–842 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Visser, P. J. et al. Cerebrospinal fluid tau levels are associated with abnormal neuronal plasticity markers in Alzheimer’s disease. Mol. Neurodegener. 17, 27 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Karlsson Linnér, R. et al. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nat. Genet. 51, 245–257 (2019).

    Article  PubMed  Google Scholar 

  62. Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Consortium, G. T. et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    Article  Google Scholar 

  65. O’Brien, H. E. et al. Expression quantitative trait loci in the developing human brain and their enrichment in neuropsychiatric disorders. Genome Biol. 19, 194 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Perlman, W. R., Webster, M. J., Kleinman, J. E. & Weickert, C. S. Reduced glucocorticoid and estrogen receptor alpha messenger ribonucleic acid levels in the amygdala of patients with major mental illness. Biol. Psychiatry 56, 844–852 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Choi, S. W. & O’Reilly, P. F. PRSice-2: polygenic risk score software for biobank-scale data. Gigascience 8, giz082 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Liu, N. et al. Cross-ancestry genome-wide association meta-analyses of hippocampal and subfield volumes. Nat. Genet. 55, 1126–1137 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. van der Meer, D. et al. Quantifying the polygenic architecture of the human cerebral cortex: extensive genetic overlap between cortical thickness and surface area. Cereb. Cortex 30, 5597–5603 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. van der Meer, D. et al. Understanding the genetic determinants of the brain with MOSTest. Nat. Commun. 11, 3512 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bakulski, K. M. et al. Genome-wide DNA methylation differences between late-onset Alzheimer’s disease and cognitively normal controls in human frontal cortex. J. Alzheimers Dis. 29, 571–588 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Beecham, G. W. et al. PARK10 is a major locus for sporadic neuropathologically confirmed Parkinson disease. Neurology 84, 972–980 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stouffer, K. M. et al. Amidst an amygdala renaissance in Alzheimer’s disease. Brain 147, 816–829 (2024).

    Article  PubMed  Google Scholar 

  75. Buto, P. T. et al. Genetic risk score for Alzheimer’s disease predicts brain volume differences in mid and late life in UK biobank participants. Alzheimers Dement. 20, 1978–1987 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Citro, S. et al. A multiple hits hypothesis for memory dysfunction in Parkinson disease. Nat. Rev. Neurol. 20, 50–61 (2023).

    Article  PubMed  Google Scholar 

  77. de Carvalho, C. R. et al. The ERK phosphorylation levels in the amygdala predict anxiety symptoms in humans and MEK/ERK inhibition dissociates innate and learned defensive behaviors in rats. Mol. Psychiatry 26, 7257–7269 (2021).

    Article  PubMed  Google Scholar 

  78. Tang, Y. et al. The construction of a Chinese MRI brain atlas: a morphometric comparison study between Chinese and Caucasian cohorts. NeuroImage 51, 33–41 (2010).

    Article  PubMed  Google Scholar 

  79. Chen, M. H. et al. Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 Individuals from 5 global populations. Cell 182, 1198–1213.e14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Graham, S. E. et al. The power of genetic diversity in genome-wide association studies of lipids. Nature 600, 675–679 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Munafo, M. R., Brown, S. M. & Hariri, A. R. Serotonin transporter (5-HTTLPR) genotype and amygdala activation: a meta-analysis. Biol. Psychiatry 63, 852–857 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Tremblay, C. et al. Sex effects on brain structure in de novo Parkinson’s disease: a multimodal neuroimaging study. Brain 143, 3052–3066 (2020).

    Article  PubMed  Google Scholar 

  83. Carrera, N. et al. Association study of nonsynonymous single nucleotide polymorphisms in schizophrenia. Biol. Psychiatry 71, 169–177 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Li, M. et al. Recent positive selection drives the expansion of a schizophrenia risk nonsynonymous variant at SLC39A8 in Europeans. Schizophr. Bull. 42, 178–190 (2016).

    PubMed  Google Scholar 

  85. Smeland, O. B. et al. Identification of genetic loci jointly influencing schizophrenia risk and the cognitive traits of verbal-numerical reasoning, reaction time, and general cognitive function. JAMA Psychiatry 74, 1065–1075 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Luo, Q. et al. Association of a schizophrenia-risk nonsynonymous variant with putamen volume in adolescents. JAMA Psychiatry 76, 435–445 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Shrestha, P. et al. Amygdala inhibitory neurons as loci for translation in emotional memories. Nature 586, 407–411 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Roozendaal, B., McEwen, B. S. & Chattarji, S. Stress, memory and the amygdala. Nat. Rev. Neurosci. 10, 423–433 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Oliver, L. D. et al. Social cognitive performance in schizophrenia spectrum disorders compared with autism spectrum disorder: a systematic review, meta-analysis, and meta-regression. JAMA Psychiatry 78, 281–292 (2021).

    Article  PubMed  Google Scholar 

  90. Feinstein, A. Multiple sclerosis: treatment of cognitive impairment in secondary progressive MS. Nat. Rev. Neurol. 13, 515–516 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Galderisi, S., Mucci, A., Buchanan, R. W. & Arango, C. Negative symptoms of schizophrenia: new developments and unanswered research questions. Lancet Psychiatry 5, 664–677 (2018).

    Article  PubMed  Google Scholar 

  92. McAllister, B. B. et al. Effects of enriched housing on the neuronal morphology of mice that lack zinc transporter 3 (ZnT3) and vesicular zinc. Behav. Brain Res. 379, 112336 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Delaneau, O., Zagury, J.-F. & Marchini, J. Improved whole-chromosome phasing for disease and population genetic studies. Nat. Methods 10, 5–6 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Schork, N. J., Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

    Article  Google Scholar 

  96. Wu, D. et al. Large-scale whole-genome sequencing of three diverse Asian populations in Singapore. Cell 179, 736–749.e15 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Konig, I. R., Loley, C., Erdmann, J. & Ziegler, A. How to include chromosome X in your genome-wide association study. Genet. Epidemiol. 38, 97–103 (2014).

    Article  PubMed  Google Scholar 

  98. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fischl, B. et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Liu, F. T., Ting, K. M. & Zhou, Z.-H. Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data 6, 1–39 (2012).

    Article  Google Scholar 

  101. Fortin, J. P. et al. Harmonization of multi-site diffusion tensor imaging data. Neuroimage 161, 149–170 (2017).

    Article  PubMed  Google Scholar 

  102. Lee, J. O. & Schnelli, K. Tracy-widom distribution for the largest eigenvalue of real sample covariance matrices with general population. Ann. Appl. Probab. 26, 3786–3839 (2016).

    Article  Google Scholar 

  103. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Han, B. & Eskin, E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am. J. Hum. Genet. 88, 586–598 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wojcik, G. L. et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature 570, 514–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen, J. et al. The trans-ancestral genomic architecture of glycemic traits. Nat. Genet. 53, 840–860 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Benner, C. et al. Prospects of fine-mapping trait-associated genomic regions by using summary statistics from genome-wide association studies. Am. J. Hum. Genet. 101, 539–551 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chiang, C. et al. The impact of structural variation on human gene expression. Nat. Genet. 49, 692–699 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. 19, 491–504 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen, J., Bardes, E. E., Aronow, B. J. & Jegga, A. G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 37, W305–W311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hinrichs, A. S. et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 34, D590–D598 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife 7, e34408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ji, Y. Cross-ancestry and sex-stratified genome-wide association analyses of amygdala and subnucleus volumes. Dataset. Figshare https://doi.org/10.6084/m9.figshare.27933333.v1 (2024).

  118. Ji, Y. Cross-ancestry and sex-stratified genome-wide association analyses of amygdala and subnucleus volumes. Zenodo https://doi.org/10.5281/zenodo.14272662 (2024).

Download references

Acknowledgements

This research was conducted using the UKB Resource under application number 75556. This study was covered by ethical approval from UKB, which was granted by the National Information Governance Board for Health and Social Care and the NHS North West Multicenter Research Ethics Committee. All participants provided their written informed consent. We express our gratitude to all participants from CHIMGEN, UKB and EMIGMA as well as to the dedicated researchers who collected and contributed valuable data. This work was supported by the National Natural Science Foundation of China (82430063, 82030053 and 81425013 to C.Y., 82330059 to B.Z. and 82371924 to J.X.), the National Key Research and Development Program of China (2018YFC1314300 to C.Y.), the National Science and Technology Innovation 2030–Major program of ‘Brain Science and Brain-Like Research’ (2022ZD0211800 to B.Z.) and the China National Postdoctoral Program for Innovative Talents (BX20240255 to N.L.).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

C.Y. and Y.J. designed the study and wrote the paper. All authors critically reviewed the paper. Y.J., N.L., Y. Yang, M.W., J.C., W.Z., S.Q., M.J.L., W.Q., F.L., M.L., S.W., Q.X., J. Xu, J.F. and C.Y. were the principal investigators. Y. Yang, M.W., J.C., W.Z., S.Q., Z.G., G.C., Y. Yu, W. Liao, H.Z., B.G., X.X., T.H., Z. Yao, Q.Z., P.Z., W. Li, D.S., C.W., S.L., Z. Yan, F.C., J.Z., W.S., Y.M., D.W., J-H.G., X.Z., K.X., X-N.Z., L.Z., Z. Ye, J. Xian, B.Z. and C.Y. acquired the data. C.Y., B.Z. and J. Xian supervised the work. Y.J. analyzed the data.

Corresponding authors

Correspondence to Junfang Xian, Bing Zhang or Chunshui Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, including a full list of members of the CHIMGEN Consortium, and Supplementary Figs. 1–29.

Reporting Summary

Peer Review File

Supplementary Tables 1–56

Supplementary Tables 1–56

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Liu, N., Yang, Y. et al. Cross-ancestry and sex-stratified genome-wide association analyses of amygdala and subnucleus volumes. Nat Genet 57, 839–850 (2025). https://doi.org/10.1038/s41588-025-02136-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-025-02136-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy