Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The Farm Animal Genotype–Tissue Expression (FarmGTEx) Project

Abstract

Genetic mutation and drift, coupled with natural and human-mediated selection and migration, have produced a wide variety of genotypes and phenotypes in farmed animals. We here introduce the Farm Animal Genotype–Tissue Expression (FarmGTEx) Project, which aims to elucidate the genetic determinants of gene expression across 16 terrestrial and aquatic domestic species under diverse biological and environmental contexts. For each species, we aim to collect multiomics data, particularly genomics and transcriptomics, from 50 tissues of 1,000 healthy adults and 200 additional animals representing a specific context. This Perspective provides an overview of the priorities of FarmGTEx and advocates for coordinated strategies of data analysis and resource-sharing initiatives. FarmGTEx aims to serve as a platform for investigating context-specific regulatory effects, which will deepen our understanding of molecular mechanisms underlying complex phenotypes. The knowledge and insights provided by FarmGTEx will contribute to improving sustainable agriculture-based food systems, comparative biology and eventual human biomedicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the FarmGTEx Project.
Fig. 2: The overall data analysis pipeline of FarmGTEx.
Fig. 3: Potential applications of FarmGTEx resources.

Similar content being viewed by others

References

  1. Frantz, L. A. F., Bradley, D. G., Larson, G. & Orlando, L. Animal domestication in the era of ancient genomics. Nat. Rev. Genet. 21, 449–460 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Lunney, J. K. et al. Importance of the pig as a human biomedical model. Sci. Transl. Med. 13, eabd5758 (2021).

  3. Davey, M. G. & Tickle, C. The chicken as a model for embryonic development. Cytogenet. Genome Res. 117, 231–239 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Baldwin, C. L. & Telfer, J. C. The bovine model for elucidating the role of γδ T cells in controlling infectious diseases of importance to cattle and humans. Mol. Immunol. 66, 35–47 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Saied, A. R. A., Metwally, A. A., Mohamed, H. M. A. & Haridy, M. A. M. The contribution of bovines to human health against viral infections. Environ. Sci. Pollut. Res. Int. 28, 46999–47023 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Spencer, T. E. et al. Future of biomedical, agricultural, and biological systems research using domesticated animals. Biol. Reprod. 106, 629–638 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Banstola, A. & Reynolds, J. N. J. The sheep as a large animal model for the investigation and treatment of human disorders. Biology 11, 1251 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hawkridge, A. M. The chicken model of spontaneous ovarian cancer. Proteomics Clin. Appl. 8, 689–699 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu, Z. L., Park, C. A. & Reecy, J. M. Bringing the animal QTLdb and CorrDB into the future: meeting new challenges and providing updated services. Nucleic Acids Res. 50, D956–D961 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Lappalainen, T., Li, Y. I., Ramachandran, S. & Gusev, A. Genetic and molecular architecture of complex traits. Cell 187, 1059–1075 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aguet, F. et al. Molecular quantitative trait loci. Nat. Rev. Methods Primers 3, 4 (2023).

    Article  CAS  Google Scholar 

  13. Aguet, F. et al. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

    Article  CAS  Google Scholar 

  14. Jasinska, A. J. et al. Genetic variation and gene expression across multiple tissues and developmental stages in a nonhuman primate. Nat. Genet. 49, 1714–1721 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Munro, D. et al. The regulatory landscape of multiple brain regions in outbred heterogeneous stock rats. Nucleic Acids Res. 50, 10882–10895 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pallares, L. F. et al. Saturating the eQTL map in Drosophila melanogaster: genome-wide patterns of cis and trans regulation of transcriptional variation in outbred populations. Preprint at bioRxiv https://doi.org/10.1101/2023.05.20.541576 (2023).

  17. Umans, B. D., Battle, A. & Gilad, Y. Where are the disease-associated eQTLs? Trends Genet. 37, 109–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Soskic, B. et al. Immune disease risk variants regulate gene expression dynamics during CD4+ T cell activation. Nat. Genet. 54, 817–826 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Walker, R. L. et al. Genetic control of expression and splicing in developing human brain informs disease mechanisms. Cell 179, 750–771 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhernakova, D. V. et al. Identification of context-dependent expression quantitative trait loci in whole blood. Nat. Genet. 49, 139–145 (2016).

    Article  PubMed  Google Scholar 

  21. Lin, W. et al. Genetic regulatory effects in response to a high-cholesterol, high-fat diet in baboons. Cell Genom. 4, 100509 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, S. et al. A multi-tissue atlas of regulatory variants in cattle. Nat. Genet. 54, 1438–1447 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Teng, J. et al. A compendium of genetic regulatory effects across pig tissues. Nat. Genet. 56, 112–123 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guan, D. et al. The ChickenGTEx pilot analysis: a reference of regulatory variants across 28 chicken tissues. Preprint at bioRxiv https://doi.org/10.1101/2023.06.27.546670 (2023).

  25. Xiang, R. et al. Gene expression and RNA splicing explain large proportions of the heritability for complex traits in cattle. Cell Genom. 3, 100385 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao, R. et al. The conservation of human functional variants and their effects across livestock species. Commun. Biol. 5, 1003 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Varcoe, T. J. et al. Considerations in selecting postoperative analgesia for pregnant sheep following fetal instrumentation surgery. Anim. Front. 9, 60–67 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Abedal-Majed, M. A. & Cupp, A. S. Livestock animals to study infertility in women. Anim. Front. 9, 28–33 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Long, J. S., Mistry, B., Haslam, S. M. & Barclay, W. S. Host and viral determinants of influenza A virus species specificity. Nat. Rev. Microbiol. 17, 67–81 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, L. et al. Construction of a multi-tissue cell atlas reveals cell-type-specific regulation of molecular and complex phenotypes in pigs. Preprint at bioRxiv https://doi.org/10.1101/2023.06.12.544530 (2023).

  31. Fang, L. et al. Cattle Cell Atlas: a multi-tissue single cell expression repository for advanced bovine genomics and comparative biology. Preprint at Research Square https://doi.org/10.21203/RS.3.RS-4631710/V1 (2024).

  32. Giuffra, E. & Tuggle, C. K. Functional Annotation of Animal Genomes (FAANG): current achievements and roadmap. Annu. Rev. Anim. Biosci. 7, 65–88 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Harrison, P. W. et al. FAANG, establishing metadata standards, validation and best practices for the farmed and companion animal community. Anim. Genet. 49, 520–526 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Langer, B. E. et al. Empowering bioinformatics communities with Nextflow and nf-core. Preprint at bioRxiv https://doi.org/10.1101/2024.05.10.592912 (2024).

  35. Cameron, D. L., Di Stefano, L. & Papenfuss, A. T. Comprehensive evaluation and characterisation of short read general-purpose structural variant calling software. Nat. Commun. 10, 3240 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Smith, T. P. L. et al. The Bovine Pangenome Consortium: democratizing production and accessibility of genome assemblies for global cattle breeds and other bovine species. Genome Biol. 24, 139 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, T. et al. The Human Pangenome Project: a global resource to map genomic diversity. Nature 604, 437–446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Byrne, A., Cole, C., Volden, R. & Vollmers, C. Realizing the potential of full-length transcriptome sequencing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20190097 (2019).

  39. Nguyen, T. V. et al. In it for the long run: perspectives on exploiting long-read sequencing in livestock for population scale studies of structural variants. Genet. Sel. Evol. 55, 9 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Viñas, R. et al. Hypergraph factorization for multi-tissue gene expression imputation. Nat. Mach. Intell. 5, 739–753 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhou, H. J., Li, L., Li, Y., Li, W. & Li, J. J. PCA outperforms popular hidden variable inference methods for molecular QTL mapping. Genome Biol. 23, 210 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stegle, O., Parts, L., Piipari, M., Winn, J. & Durbin, R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat. Protoc. 7, 500–507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mostafavi, S. et al. Normalizing RNA-sequencing data by modeling hidden covariates with prior knowledge. PLoS ONE 8, e68141 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Engreitz, J. M. et al. Deciphering the impact of genomic variation on function. Nature 633, 47–57 (2024).

    Article  Google Scholar 

  45. van der Wijst, M. G. P. et al. The single-cell eQTLGen consortium. eLife 9, e52155 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sul, J. H., Martin, L. S. & Eskin, E. Population structure in genetic studies: confounding factors and mixed models. PLoS Genet. 14, e1007309 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Teng, J. et al. OmiGA: a toolkit for ultra-efficient molecular trait analysis in complex populations. Preprint at bioRxiv https://doi.org/10.1101/2024.12.19.629424 (2024).

  48. Liu, J. et al. Large language models in bioinformatics: applications and perspectives. Preprint at arxiv.org/abs/2401.04155 (2024).

  49. Xiang, R. et al. Quantifying the contribution of sequence variants with regulatory and evolutionary significance to 34 bovine complex traits. Proc. Natl Acad. Sci. USA 116, 19398–19408 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fang, L. et al. Use of biological priors enhances understanding of genetic architecture and genomic prediction of complex traits within and between dairy cattle breeds. BMC Genomics 18, 604 (2017).

    Google Scholar 

  51. Hayes, B. J. et al. Potential approaches to create ultimate genotypes in crops and livestock. Nat. Genet. 56, 2310–2317 (2024).

    Article  CAS  PubMed  Google Scholar 

  52. McHugo, G. P., Dover, M. J. & MacHugh, D. E. Unlocking the origins and biology of domestic animals using ancient DNA and paleogenomics. BMC Biol. 17, 98 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, M. et al. Evidence of polygenic adaptation in Sardinia at height-associated loci ascertained from the Biobank Japan. Am. J. Hum. Genet. 107, 60–71 (2020).

    Google Scholar 

  54. Bouwman, A. C. et al. Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals. Nat. Genet. 50, 362–367 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Genereux, D. P. et al. A comparative genomics multitool for scientific discovery and conservation. Nature 587, 240–245 (2020).

    Article  Google Scholar 

  56. Lewin, H. A. et al. The Earth BioGenome Project 2020: starting the clock. Proc. Natl Acad. Sci. USA 119, e2115635118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, J. et al. Learning functional conservation between human and pig to decipher evolutionary mechanisms underlying gene expression and complex traits. Cell Genom. 3, 100390 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).

    Article  PubMed  Google Scholar 

  60. DI Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35, 316–319 (2017).

    Article  PubMed  Google Scholar 

  61. Schatz, M. C. et al. Inverting the model of genomics data sharing with the NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space. Cell Genom. 2, 100085 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Daetwyler, H. D. et al. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat. Genet. 46, 858–865 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Denoyelle, L. et al. VarGoats project: a dataset of 1159 whole-genome sequences to dissect Capra hircus global diversity. Genet. Sel. Evol. 53, 86 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Smith, J. et al. Fourth Report on Chicken Genes and Chromosomes 2022. Cytogenet. Genome Res. 162, 405–528 (2022).

    Article  PubMed  Google Scholar 

  65. Tuggle, C. K. et al. The Agricultural Genome to Phenome Initiative (AG2PI): creating a shared vision across crop and livestock research communities. Genome Biol. 23, 3 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Clark, E. L. et al. From FAANG to fork: application of highly annotated genomes to improve farmed animal production. Genome Biol. 21, 285 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kalbeisch, T. et al. The Ruminant Telomere-to-Telomere (RT2T) Consortium. Nat. Genet. 56, 1566–1573 (2024).

    Article  Google Scholar 

  68. Zhou, H. J., Ge, X. & Li, J. J. ClipperQTL: ultrafast and powerful eGene identification method. Preprint at bioRxiv https://doi.org/10.1101/2023.08.28.555191 (2023).

  69. Wen, X., Lee, Y., Luca, F. & Pique-Regi, R. Efficient integrative multi-SNP association analysis via deterministic approximation of posteriors. Am. J. Hum. Genet. 98, 1114–1129 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ji, Y., Zhou, Z., Liu, H. & Davuluri, R. V. DNABERT: pre-trained bidirectional encoder representations from transformers model for DNA-language in genome. Bioinformatics 37, 2112–2120 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang, D. et al. DNAGPT: a generalized pre-trained tool for multiple DNA sequence analysis tasks. Preprint at bioRxiv https://doi.org/10.1101/2023.07.11.548628 (2024).

  72. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Google Scholar 

  73. Rubinacci, S., Ribeiro, D. M., Hofmeister, R. J. & Delaneau, O. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 53, 120–126 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Google Scholar 

  75. Castel, S. E., Mohammadi, P., Chung, W. K., Shen, Y. & Lappalainen, T. Rare variant phasing and haplotypic expression from RNA sequencing with phASER. Nat. Commun. 7, 12817 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yuan, K. et al. Fine-mapping across diverse ancestries drives the discovery of putative causal variants underlying human complex traits and diseases. Nat. Genet. 56, 1841–1850 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

L. Fang is supported by Agriculture and Food Research Initiative Competitive grant 2022-67015-36215 from the USDA National Institute of Food and Agriculture, and seed funding from CellFood Hub (Aarhus University Foundation). Y. Luo is supported by the Innovative Health Initiative Joint Undertaking under grant agreement 101165643. Z. Zhang is supported by funding from the China Agriculture Research System (CARS-35). We thank all the researchers who have contributed to the generation and analyses of both publicly available and newly generated data used in the pilot phase of FarmGTEx. We thank I. Kaplow at the Department of Biological Sciences and the Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

L. Fang took the lead in writing the manuscript with input from all authors. J.J.L., A.A.P., L. Frantz, H. Zhou, Z. Zhang and G.E.L. made critical revisions to the manuscript and made major contributions to the pilot phase of FarmGTEx. L. Fang, J.T., Q.L., Z.B., Y.H., X.P. and W.G. contributed to figure generation. S.L., D.G., B.L., Y.G., Y.H., M. Gong, Z.P., Y.Y., E.L.C., J. Smith., K.R., R.X., A.J.C., M.E.G., M. Littlejohn, G.L., D.E.M., J.F.O’G., P.S., G.S., M.S.L., Z.J., X.P., W.G., Haihan Zhang, X. He, Yuebo Zhang, N.G., J.H., G.Y., Y. Liu, Z.T., P.Z., Y. Zhou, L. Fu, X.W., D.H., L. Liu, S.C., R.S.Y., X.S., C.X., H.C., L.M., J.B.C., R.L.B., C.j.L., C.P.V.T., B.D.R., N.B., J. Lunney., W. Liu., L.G., X. Zhao., E.M.I.-A., Y. Luo, L. Lin, O.C.-X., M.F.L.D., R.P.M.A.C., M. Gòdia, O.M., M.A.M.G., J.E.K., C.K.T., F.M.M., D.R., E.G., M.A., A.C., M.B., G.T.-K., Jing Li, C.F., M.F., Qishan Wang, Z.H., Qin Wang, F.Z., L. Jiang, G.Z., Z. Zhou, R.Z., H.L., J.D., L. Jin, M. Li, D.M., Xiaohong Liu, Y.C., X. Yuan, Jiaqi Li, S.Z., Yi Zhang, X.D., D.S., H.-Z.S., C.L., Y. Wang, Y.J., D.W., W. Wang, X.F., Q.Z., K.L., Hao Zhang, N.Y., X. Hu, W.H., J. Song., Y. Wu, J.Y., W. Wu, C.K., Xinfeng Liu, X. Yu., L.C., X. Zhou, S.K., W. Li, H.K.I., E.S.B., B.R. and M.C.S. have provided valuable comments and edits to the manuscript. All authors provided critical feedback and helped shape the manuscript.

Corresponding authors

Correspondence to Lingzhao Fang, Jingyi Jessica Li, Abraham A. Palmer, Laurent Frantz, Huaijun Zhou, Zhe Zhang or George E. Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Ben Hayes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Teng, J., Lin, Q. et al. The Farm Animal Genotype–Tissue Expression (FarmGTEx) Project. Nat Genet 57, 786–796 (2025). https://doi.org/10.1038/s41588-025-02121-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-025-02121-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy