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ABSTRACT: Airborne Doppler radar provides detailed and targeted observations of winds and precipitation in weather
systems over remote or difficult-to-access regions that can help to improve scientific understanding and weather forecasts.
Quality control (QC) is necessary to remove nonweather echoes from raw radar data for subsequent analysis. The complex
decision-making ability of the machine learning random-forest technique is employed to create a generalized QC method
for airborne radar data in convective weather systems. A manually QCed dataset was used to train the model containing
data from the Electra Doppler Radar (ELDORA) in mature and developing tropical cyclones, a tornadic supercell, and a
bow echo. Successful classification of ;96% and ;93% of weather and nonweather radar gates, respectively, in withheld
testing data indicate the generalizability of the method. Dual-Doppler analysis from the genesis phase of Hurricane
Ophelia (2005) using data not previously seen by the model produced a comparable wind field to that from manual QC.
The framework demonstrates a proof of concept that can be applied to newer airborne Doppler radars.

SIGNIFICANCE STATEMENT: Airborne Doppler radar is an invaluable tool for making detailed measurements of
wind and precipitation in weather systems over remote or difficult to access regions, such as hurricanes over the ocean.
Using the collected radar data depends strongly on quality control (QC) procedures to classify weather and nonweather
radar echoes and to then remove the latter before subsequent analysis or assimilation into numerical weather predic-
tion models. Prior QC techniques require interactive editing and subjective classification by trained researchers and can
demand considerable time for even small amounts of data. We present a new machine learning algorithm that is trained
on past QC efforts from radar experts, resulting in an accurate, fast technique with far less user input required that can
greatly reduce the time required for QC. The new technique is based on the random forest, which is a machine learning
model composed of decision trees, to classify weather and nonweather radar echoes. Continued efforts to build on this
technique could benefit future weather forecasts by quickly and accurately quality-controlling data from other airborne
radars for research or operational meteorology.
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1. Introduction

Airborne Doppler radar has a rich history of advancing
knowledge in the meteorology community through targeted
and close-range data collection of three-dimensional wind
and precipitation features in weather systems over land or
ocean. Despite the utility provided by airborne Doppler ra-
dar, the analysis process comes with challenges unique to the
platform. For accurate dual-Doppler wind synthesis to take
place, quality control (QC) is required to remove the motion
of the aircraft carrying the radar, establish Earth-relative loca-
tions of radar echoes, and remove any nonmeteorological
echoes from the data (Lee et al. 2003). Although several advan-
ces have been made on the platform motion issue to correct er-
rors in the aircraft inertial navigation system (Testud et al. 1995;
Bosart et al. 2002; Cai et al. 2018), the removal of nonmeteoro-
logical data has received less attention. Previous attempts to au-
tomate the process have shown some success (Gamache et al.
2008; Bell et al. 2013) but existing techniques provide a subopti-
mal classification of weather and nonweather echoes, either re-
moving too much weather data in real-time applications or
requiring additional time-consuming manual QC to produce

high-quality wind analyses for research. In the current study, we
improve this process through the use of complex, automated
decision-making available via machine learning techniques.

Although recent progress has been made with QC techni-
ques for ground-based radars (Tang et al. 2020; Ośródka and
Szturc 2022), older threshold-reliant QC techniques for air-
borne Doppler radar (Gamache et al. 2008; Bell et al. 2013)
remain the state-of-the-art methods for airborne radar obser-
vations in tropical (Fischer et al. 2022) and midlatitude
(Stechman et al. 2020) convective systems. A full automation
of airborne radar QC was developed for P-3 Hurricane
Hunter tail Doppler radar (TDR) data in real time (Gamache
et al. 2008) based on a rules-based approach that sets thresh-
olds for data retention. A similar approach was developed by
Bell et al. (2013) for research analysis, significantly reducing
the effort required in the QC process prior to interactive man-
ual editing in the Solo editing software from the National
Center for Atmospheric Research (NCAR) (Oye et al. 1995).
Bell et al. (2013) provided three different levels of the QC
algorithm (high, medium, and low) that represented a trade-
off between how much “good” weather data are retained
versus how much “bad” nonweather data are removed. If the
thresholds are increased to the “high” level, then 95% of the
nonweather data can be removed by the algorithm, but 15%
of the valuable weather data are discarded with it. Similarly,

Corresponding author: Alexander J. DesRosiers, adesros@rams.
colostate.edu

DOI: 10.1175/AIES-D-23-0064.1 e230064

Ó 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding
reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

D E S RO S I E R S AND BE L L 1JANUARY 2024

Unauthenticated | Downloaded 02/22/24 08:12 PM UTC

mailto:adesros@rams.colostate.edu
mailto:adesros@rams.colostate.edu
http://www.ametsoc.org/PUBSReuseLicenses


“low” thresholds allow for retention of 95% of the good data,
but also leaves 20% of the bad data that must be removed
manually by a trained expert. An improved QC algorithm re-
quires more complex decision-making than the thresholding
of the approaches utilized in previous techniques to identify
and remove nonmeteorological data.

To develop an automated airborne Doppler radar QC
methodology appropriate for a wide variety of weather sys-
tems, Bell et al. (2013) used an extensive manually QCed da-
taset from the NCAR Electra Doppler Radar (ELDORA)
(Hildebrand et al. 1996) for development and verification.
The ELDORA dataset used in Bell et al. (2013) and herein
was collected from several field campaigns investigating dif-
ferent convective phenomena including both mature (Hence
and Houze 2008) and developing tropical cyclones (Bell and
Montgomery 2010), tornadoes (Wakimoto and Liu 1998), and
bow echoes (Wakimoto et al. 2006). The field campaigns that
gathered these data were the Hurricane Rainband and Intensity
Change Experiment (RAINEX), Tropical Cyclone Structure
(T-PARC/TCS08), Verification of the Origins of Rotation in
Tornadoes Experiment (VORTEX), and Bow Echo and Meso-
scale Convective Vortex Experiment (BAMEX), respectively.
The diverse dataset collected by ELDORA and QCed by dif-
ferent experienced radar meteorologists make it a prime candi-
date for developing an improved QC method for airborne
Doppler radar data in convective environments.

In the new approach employed here, we use machine learning
(ML) to provide complex decision-making capable of discrimi-
nating between sometimes subtle distinctions in weather and
nonweather echoes. ML methods have been applied to a range
of tasks in many disciplines, with the advantages of ML currently
being realized in the field of meteorology (Boukabara et al.
2019) to advance remote sensing retrievals, data assimilation,
model physics calculation, forecasting, and data QC. Although
scanning geometry and wavelength create considerable differ-
ences between airborne and ground-based radar data, the recent
successful use of ML for ground-based radar QC (Lakshmanan
et al. 2014) further motivated an attempt with airborne data. A
relatively straightforward ML technique, the random forest
(Louppe 2014), creates an ensemble of decision trees that can be
used to classify each radar gate individually. The capabilities of
ML were used to improve on the current QC algorithms for the
purpose of producing a research quality dual-Doppler wind syn-
thesis from TDR data with minimal effort. Section 2 describes
the data used and methodology employed to train and test a
random-forest model. Section 3 presents and evaluates results
from testing data withheld from the training set and a separate
example case. Discussion of the results takes place in section 4,
followed by conclusions in section 5.

2. Data and method

Training and testing of the random-forest (RF) model uti-
lized the same dataset from Bell et al. (2013), which consists
of 6, 11, 22, and 9 min of TDR data collected by ELDORA
during the RAINEX, TPARC/TCS08, BAMEX, and VORTEX
field experiments, respectively. The combined dataset contains
approximately 87.9 million total radar gates, excluding gates

devoid of data, containing a variety of weather and non-
weather echoes. All data used in training was QCed via a com-
bination of automated and manual techniques by radar
experts, providing an extensive training dataset from their
dedicated efforts. The variety of airborne data in the training
dataset is representative of different convective environments
and slightly different approaches to the interactive QC process
depending on the person performing QC. The QCed data pro-
vided the echo classification required for training a machine
learning model to emulate the interactive process with greater
speed and minimal user input.

A flowchart of the method, shown in Fig. 1, visually repre-
sents the technique. Predictors for the model extracted from
the ELDORA dataset contain the radar range, radar reflectiv-
ity in reflectivity decibels (dBZ), Doppler velocity in meters
per second, normalized coherent power (NCP; unitless), and
derived mathematical quantities from the raw radar moments.
NCP measures the quality of the Doppler velocity measure-
ment by the coherence of the phase shifts within the signal
and is normalized to range from 0 to 1, where 1 is likely high-
quality data (similar to the signal quality index produced by
some radar signal processors). The derived quantities include
the average and standard deviation for the radar moments rel-
ative to neighboring radar gates, isolation of a radar gate,
probability of a radar gate being affected by the ground, and
range normalized through division by aircraft altitude. Range
normalized to the aircraft altitude may help identify artifacts
due to the reflection of the TDR’s antenna-pattern sidelobes
off of the ground (Bell et al. 2013). The isolation parameter
calculates the ratio of neighboring radar gates with echo to
the total neighboring gates in a square area centered on the
gate and helps identify spurious “speckles” unlikely to be as-
sociated with weather systems. The isolation predictor is less
useful in ELDORA scans that are characterized by continu-
ous swaths of data (Fig. 6c) but may be useful when applying
this method to newer airborne Doppler radars. The probabil-
ity of a ground gate is adapted from geometric radar beam
considerations in Testud et al. (1995) and aims to identify ra-
dar gates that may be affected by surface echo. The original
formula produces a binary classification of ground contamina-
tion based on half-power beamwidth of the radar antenna and

FIG. 1. Flowchart of the experimental setup to create a random-forest
model for airborne Doppler radar QC.
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the scanning geometry. The current probability of ground
gate formula improves upon this estimate by producing a
probabilistic estimate of the amount of ground contamination
in a radar gate assuming a full Gaussian beam volume. In to-
tal, 14 predictors (Table 1) are extracted for each radar gate
in the dataset and will be considered for model inclusion.

The mined predictors make up the X array that is used to
classify data as weather or nonweather. The classification
made by a human radar expert was stored in the Y array as a
binary flag for each radar gate. If a radar gate was present in
the pre-QC field and post-QC field, it was considered weather
data in the Y array and assigned a value of 1. If it had been
deleted in QC, it was assigned the nonweather class and re-
corded as 0. Radar gates in ELDORA scans containing no
data were excluded from the dataset as they can automatically
be left blank during QC. Gates in the dataset that had NCP
values of 0.2, indicating poor signal quality, or lower or a
value of 1 for probability of ground gates, indicating subterra-
nean echoes, were also excluded. Data meeting either of these
criteria are easily identifiable as likely nonweather and ex-
cluding them allows the RF model to focus on more difficult
classifications. Approximately 45.9 million total radar gates re-
main in the ELDORA dataset for this study after the above ex-
clusion criteria are met. A successfully trained model classifies
radar gates as weather or nonweather data using the predictors
in theX array to predict the binary classification in theY array.

a. Training, validation, and testing split

The ELDORA dataset was split into training, validation,
and testing sets with a percentage split of roughly 72%, 8%,
and 20% respectively. Partitioning the ELDORA dataset into
the aforementioned sets starts by removing and setting aside
the testing set for evaluation of the final tuned RF model. A
random split of the data with shuffling is not used on the X
and Y arrays from the dataset. Shuffling the data allows for
data leakage due to spatial autocorrelation of neighboring ra-
dar gates in the same scan. When radar gates that originally
neighbored each other in a scan end up split with one in the
training set and the other in testing, the model has a consider-
able advantage classifying the testing gate given it has seen
something with nearly identical predictors in training. There
may also be temporal autocorrelation with consecutive radar
scans containing similar data, but this cannot be completely
avoided without reducing the size of the valuable dataset, so
the spatial correlation will be addressed as the main priority
in dataset splitting. To separate the testing set and mitigate
spatial autocorrelation, scans were set aside for testing before
the feature extraction script produced the training and testing
sets. The ELDORA dataset contains 1780 TDR scans in total
across all four observation cases; 20% of this value is 356.
Dividing this figure by four shows that a representative train-
ing set across cases should be composed of 89 TDR scans
from each case. To make sure the variability with time of each
case is represented, 89 was rounded up to 90 scans and 30 con-
secutive scans were taken from the beginning, middle, and
end of each observational case. Selecting scans in groups is a
purposeful step to limit temporal autocorrelation that may

still occur, but mainly at selection boundaries. Selected scans
were set aside and processed for predictor and classification ar-
rays (X and Y), which were stored in the h5 file data format to
make up the testing set.

The remaining scans after the testing set was removed were
also run through feature extraction to create an initial training
set that was then divided into validation and training sets.
Every 10th observation in the training set was removed and
pooled into a validation set for model tuning and feature selec-
tion. The every-10th-selection method results in the percentage
makeups of 72% and 8%, respectively, for training and valida-
tion. Although using every 10th observation in the validation
set allows for potential spatial autocorrelation of neighboring
gates in training to prepare the model unfairly well for the vali-
dation set, this choice was purposeful to increase variability
in the validation set. An additional testing set beyond the
ELDORA dataset used thus far is introduced later. The addi-
tional testing set will reverify generalizability while allowing
the validation set that is well spread through training to be a
representative model tuning tool.

b. Feature selection

Reducing the number of input features that the RF model
can use to make a classification decision helps to maintain gen-
eralizability and reduce the risk of model overfitting. Feature
selection is performed by running 100 different logistic regres-
sion classification models using all 14 features, or predictors,
while varying a lasso (L1) regularization penalty. In this exper-
iment, the validation set is split randomly into training and
testing sets containing 80% and 20% of the samples respec-
tively so that each logistic regression model can be evaluated
for performance. The 100 models are initialized with unique
lambda L1 penalty values ascending in logarithmic space from
1028 to 1. Lambda sets the inverse of regularization strength.
At smaller values, the lasso regularization penalty is large and
the logistic regression model is forced to make classifications

TABLE 1. All features collected for potential use in the machine
learning model and their abbreviations used in this study. Feature
names followed by an asterisk are the features retained for the
model.

Feature
abbreviation Feature name

VT Doppler velocity
ZZ Raw reflectivity
NCP Normalized coherent power*

ALT Altitude of radar gate*

AVT Avg of velocity
AZZ Avg of reflectivity
ANCP Avg of NCP
SVT Std dev of velocity*

SZZ Std dev of reflectivity
SNCP Std dev of NCP
ISO Isolation parameter
PGG Probability of ground gate*

RG Radar range*
NRG Radar range normalized to aircraft altitude
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with less input features as their coefficients are forced to zero.
To select features, a lambda value is objectively selected where
there is an acceptable trade-off between model performance
and reduced input features required for classification. Each lo-
gistic regression model is evaluated with the testing data and
scored with two metrics. The first of which is a weighted F1

score. The F1 score consists of a combined measure of preci-
sion and recall from true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN):

precision 5
TP

TP 1 FP
, recall 5

TP
TP 1 FN

, and

F1 5
2 3 precision 3 recall
precision 1 recall

: (1)

When evaluating metrics for each data class, a positive is a de-
termination that the data belongs to the class in question
while a negative indicates the opposite. True or false denotes
correctness of the model classification. Precision is the ratio of
correctly predicted positive observations to the total count
predictions for positive including those that were false. Recall
is the ratio of correctly predicted positives to the total count
of positives in the training set. The F1 score combines preci-
sion and recall for each class of data resulting in a score of
0 to 1, with 1 indicating perfect precision and recall. The
weighted aspect of the score takes the F1 score for weather and
nonweather data classes and averages them based on the bal-
anced class weights calculated during model training. Weighting
is used to get an accurate score despite class imbalance in the
ELDORA dataset, which is roughly 3:1 with nonweather being
the minority class after easily identifiable data likely to be non-
weather were filtered out via NCP and probability of ground
gates. The receiver operating characteristic area under the curve
(ROC AUC) is also evaluated. The ROC AUC score describes
classification performance with a maximum attainable value of 1.
Plotting these metrics against lambda in Fig. 2a show how the ad-
dition of features impacts performance metrics.

Initially the rise in performance is quite steep as the first
predictor (NCP) is added in just after l 5 1026, but by around
l 5 1024 performance has largely leveled out and does not
improve much more. A zoomed-in look at the plot in Fig. 2b
shows this and also identifies the lambda value selected
(l ; 2.48 3 1025). Plotting the regression coefficients at this
lambda value (Fig. 2c) informs which features to retain for
training the RF model. Features, or predictors, and their ab-
breviations are defined in Table 1. The logistic regression ex-
periment results suggest the retention of NCP, altitude of
radar gate (ALT), standard deviation of velocity (SVT), isola-
tion parameter (ISO), probability of ground gate (PGG), and
radar range (RG), with NCP being most important to data
classification. Given the continuous nature of coverage in raw
Eldora data (Fig. 6c) and the low importance of ISO, it is as-
sumed the isolation parameter does not add much in terms of
performance for this dataset and will be dropped from this
list. The five predictors of NCP, altitude, standard deviation
of velocity, probability of ground gate, and radar range are
used to tune, and train the RF model. Although reflectivity is

useful in visually identifying nonweather data during manual
QC, the lasso regression results indicate it may not be neces-
sary for this automated approach.

c. Hyperparameter tuning

Tuning, training, and testing of the model were performed
with Python’s SciKit-learn library (Pedregosa et al. 2011). Hy-
perparameters, which are set to control the learning process,
are very important to maximize model performance. Choice
of hyperparameters for a model determines its complexity. A
model that is too complex is prone to overfitting to the train-
ing set at the expense of performance on unseen data. A
model that is too simple fails to capture important characteris-
tics of the data and underperforms on the classification task
(Claesen and De Moor 2015). Tuning of the RF model was fo-
cused on varying two hyperparameters, the number of trees
and the maximum depth of a tree. Adjusting the number of
trees simply changes the count of decision trees in the random
forest. Maximum depth assigns a limit to how far the trees can
branch downward and further sort the data with finer distinc-
tions. Testing the impacts of hyperparameter choices on
model performance helps ensure the appropriate level of
model complexity is achieved.

There is an unequal distribution of classes between weather
and nonweather radar gates in the filtered ELDORA dataset,
with a higher frequency of weather echoes. To combat the in-
equality, class weights used in training were balanced by mak-
ing the weights of the classes inversely proportional to class
frequencies in the data. The adjusted weights assigned greater
importance in model training to the less common class of non-
weather data. As a consequence of imbalance, accuracy by it-
self is not an effective metric with which to assess the model’s
binary classification performance. For example, a model that
always classifies radar gates as the most common class would
receive a deceivingly good accuracy score in a dataset consist-
ing mainly of that class, regardless of the model not perform-
ing the classification task. The weighted F1 score is used for
evaluation again to avoid the pitfalls of simple accuracy scores
and class imbalance.

The GridSearchCV functionality from SciKit-learn (Pedregosa
et al. 2011) was utilized for iterative training and testing of RF
models with different combinations of the two varied hyperpara-
meters. The aim was to find which model exhibits a high weighted
F1 score while not unnecessarily increasing complexity to a point
of diminishing return for the added complexity. To further pre-
vent overfitting, a cross validation scheme was employed. Before
each model is tested, the validation dataset was split without shuf-
fling into the default count of five stratified groups, or folds, with
class distributions similar to the full set. For each combination of
hyperparameters, a model was trained on four folds, leaving the
remaining one for testing. This step was repeated until each fold
had been used for testing and five models were trained and
scored. The weighted F1 score given for each hyperparameter
combination is an average of scores on withheld testing data from
the five different models created with those specifications. Results
of the hyperparameter tuning (Fig. 3), show that past a certain
level of model complexity, there is not much performance to be
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gained. A larger parameter space extending out to 31 trees and a
maximum depth of 20 was tested that confirmed the diminishing
returns on performance continue (not shown). After a weighted
F1 score of ;0.945 was achieved further increases in score were
very small. An additional test with 300 trees produced similar

results indicating this plateau in performance continues with even
greater model complexity. The hyperparameter combination of
21 trees with a maximum depth of 14 that achieved the score of
;0.945 was chosen to train and test a more thorough model with
the larger training and testing datasets.

FIG. 2. (a) Logistic regression performance measured by weighted F1 (blue) and ROC AUC
scores (orange) as the L1 lasso penalty coefficient l values change. (b) As in (a), but zoomed in
closer to the chosen l value. (c) Feature coefficients at the chosen l value. Feature abbreviations
are defined in Table 1.
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3. Results

Following steps outlined in the flowchart (Fig. 1), a general-
ized model for airborne Doppler radar QC of nonmeteorolog-
ical data was trained and evaluated. In this section, model
performance and predictor importance were evaluated using
common metrics and ELDORA data not included in the ML
training and testing datasets were used to test the viability of
the model as a generalizable QC prototype.

a. Model performance metrics

Model performance metrics and information are outlined
in Fig. 4. The confusion matrix (Figs. 4a–c) reports retention
of weather data and removal of nonweather data for the train-
ing, validation, and testing sets. Nonweather data are re-
moved in the training set at a 96.8% rate and weather data
are retained at a 95.2% rate. Nearly identical performance is
recorded with the validation set. Weather data in the withheld
testing set are identified at a lesser rate of 92.9% in the testing
set, but identification and removal of nonweather data is suc-
cessful in 96% of instances in the dataset. Although a de-
crease in performance is expected, model performance on the
testing set is still comparable to training and validation. The
weighted F1 score and ROC-AUC scores for the testing data-
set are both;0.94. Impurity-based feature importance for RF
predictor variables is ranked in Fig. 4d. The feature impor-
tance is a numerical representation of the predictors that
affect the most samples and split data most effectively
(McGovern et al. 2019). For a predictor to receive a high fea-
ture importance relative to others, it should be used higher up
in the tree to divide data and be effective at decreasing impu-
rity in the groups into which the predictor splits the data. Per-
mutation importance, also shown in Fig. 4d, evaluates how
the model score declines when the chosen feature is randomly
shuffled so as to render it useless to prediction. Altitude,
NCP, and the standard deviation of velocity rank in the top 3
of both importance metrics. The rankings demonstrate the
utility of the derived quantities (2 of the top 3; in red text)

that provide context for a radar gate relative to its surround-
ings and aid in determining its likelihood of being weather
data. Probability of ground gates ranks last in both methods.
The low ranking is expected given it only contains useful in-
formation in a narrow strip of radar data near the ground
where the radar beam approaches the surface. How the
model uses these predictors is examined in further detail us-
ing data from an additional test case described in the follow-
ing subsection.

b. QC test case

A rigorous test of the model to evaluate its suitability for
airborne radar QC of nonmeteorological data is using it with
data not included in the training or testing datasets used thus
far. During the RAINEX field campaign on 6 September
2005, ELDORA was used to observe intense convective activ-
ity on the southern edge of the tropical depression that later
became Hurricane Ophelia (Houze et al. 2009). TDR data
collected by ELDORA during a closeup 15-min flyby leg of
the convective feature were QCed with the RF model for
comparison with the original interactive QC used in the pub-
lished analysis. The MLQC scores showed only a slight de-
crease in performance from the statistics achieved with the
testing dataset. Nonweather data were removed at a 94.5%
rate while 91.8% of good weather data were retained. The
weighted F1 score and ROC-AUC scores for the Ophelia da-
taset are both ;0.93. The slight decrease is expected since the
data were not only unseen by the model like the testing set,

FIG. 3. Heat map depicting weighted F1 score performance of
each hyperparameter combination tested. Colors and values in
each square indicate model performance for each combination of
hyperparameters. The x axis is the number of trees, and the y axis
is the depth to which decisions can be made in each tree.

FIG. 4. Confusion matrices outlining model performance on the
(a) training, (b) validation, and (c) testing sets. Percentages are
based upon the true classifications and sum to 100 across rows.
(d) Predictors used by the model ranked on the basis of impurity-
and permutation-based feature importance. SD is short for stan-
dard deviation of a quantity calculated with respect to neighboring
points. Predictors in red are calculated for the model, and those in
black are present in the raw data.
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but entirely separate from the dataset used thus far. There-
fore, the algorithm has to generalize its decision-making be-
yond its training to some extent. Interactive QC on this
dataset may also have slight differences in technique specific
to the individual performing interactive QC as compared with
those responsible for QC in the training dataset. To gain
more insight into these results and how the model used the
given predictors, histograms were created for the five predic-
tors (Fig. 5) using a probability density function (PDF) that
sums to one. Data are grouped by both correct and incorrect
predictions of weather and nonweather creating four different
histograms for each predictor.

Correct predictions of both good and bad data cluster near
high and low bounds for NCP with false weather predictions
tending to peak with higher NCP values than those of true
nonweather predictions (Fig. 5a). Higher-altitude echoes
tended to be nonweather while classification based on this
metric alone becomes more complicated as gates approach
the surface (Fig. 5b). Low standard deviations of velocity typi-
cally indicated good weather data (Fig. 5c). Probability of
ground gates is only a useful metric near the surface where
values are nonzero, so the y axis is capped at 0.05 to show
most of the variability in this metric that occurs at lower val-
ues of the predictor (Fig. 5d). As the probability approaches
higher values, the model exclusively successfully predicts non-
weather gates associated with the ground. Radar gates are
more likely to be nonweather at greater range (Fig. 5e). The
PDFs of all analyzed predictors do not reveal clear and deci-
sive cutoffs providing further evidence of the shortfalls of an
approach using only rigidly applied thresholds as in Bell et al.

(2013). This analysis makes clear the benefits of allowing a
model to classify radar data based on information gathered
from multiple predictors.

The end goal of airborne radar QC is to create a dual-
Doppler wind synthesis from intersecting fore and aft scans
through the weather of interest. One approach to creating this
synthesis is through the use of a three-dimensional variational
technique called “spline analysis at mesoscale utilizing radar
and aircraft instrumentation” (SAMURAI) that yields a max-
imum likelihood estimate of the atmospheric state for the
given radar observations (Bell et al. 2012; Foerster et al.
2014). SAMURAI was used to create analyses of the ob-
served convective feature using data processed by both the
original interactive QC and novel ML method. An example
scan of Doppler velocity is shown in Figs. 6a–c, illustrating
that the two methods produce a similar end product of a
QCed velocity field in this test case. Only slight differences
are detectable in the interactive QC scan when compared
with machine learning QC (Figs. 6a,b). Figure 6 shows the
SAMURAI wind analyses for each technique performed with
a 4Dx Gaussian filter applied in the horizontal and a 2Dx in
the vertical. Horizontal resolution is 1 km and vertical resolu-
tion is 0.5 km. Slight discrepancies in the winds at lower re-
flectivity values are found when comparing the horizontal
cross sections at 2-km altitude in Figs. 6d and 6f. A weak in-
flow channel in the bottom left corner of Fig. 6f is present in
the MLQC but not in the interactive editing. The horizontal
flow fields are otherwise largely identical. Vertical cross sec-
tions (traced in cyan; Fig. 6d) passing through the highest re-
flectivity region of the convective feature show comparison of

FIG. 5. PDFs of classifications for each predictor for the Ophelia (2005) test case: (a) NCP, (b) altitude, (c) SD of velocity, (d) PGG,
and (e) range. The x axis indicates the value of the predictor, and the y axis displays PDF values that sum to 1. Different color outlines rep-
resent the classification of each radar gate, with red bars indicating true nonweather, green bars indicating true weather classification,
yellow bars indicating false nonweather, and blue bars indicating false weather. True and false indicate the correctness of model
classification.
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the calculated vertical motion (Figs. 6e,g). Both analyses dis-
play a similar shape and maximum value of the upward com-
ponent of motion. There are slight differences in magnitude
at lower levels to the left of the convective core. In general,
consistencies in the low level planar flow field (Figs. 6d,f) and
vertical motion (Figs. 6e,g) indicate the method is capable of
producing an analysis that would be scientifically interpreted
in a similar way to one produced by more time consuming in-
teractive QC efforts.

4. Discussion

The proof-of-concept model demonstrates the ability of the
random-forest ML technique to automate the time consuming
interactive manual QC effort required to produce a research
quality dual-Doppler analysis. Although the technique has
not yet been optimized for speed, its present state offers a
faster alternative for researchers to investigate observed con-
vective weather phenomena. QC of a scan from the Ophelia
test case proceeded as follows. The radar scan file is read in
and the required predictors are calculated. Pointwise classifi-
cation of weather and nonweather radar gates are made by
the RF model. All radar gates that do not contain data or
meet filtering thresholds in NCP and probability of ground
gates are set to the nonweather class so that the full data ar-
rays remain intact. All radar gates marked as nonweather via
the generated binary prediction array are set to fill values in
copies of the original fields that effectively removes the data

from the scan. The new QCed fields are written into the origi-
nal radar file with the nonweather data removed. The process
in its entirety takes a few minutes per scan. An optimized re-
write of the predictor mining script and parallel processing of
scans are steps that could greatly improve the processing
speed of the MLQC technique in the future. Regardless of
the current time requirements of this method, little user input
is required. Automated QC can be performed in the back-
ground while a researcher completes other tasks rather than
visually inspecting scans for nonweather data.

A key step missing from this QC process is the unfolding of
velocity data. When observed Doppler velocities exceed the
Nyquist velocity in either the positive or negative direction,
the velocity folds over to the oppositely signed maximum
value and reports the value incorrectly. Folding errors are cor-
rected by adding or subtracting the correct number of Nyquist
intervals (2Vmax), where Vmax is the maximum unambiguously
detectable velocity (MUDV) for the radar (Houze et al.
1989). The dual-pulse repetition frequency capability of
ELDORA allowed for the measurement of velocities of
60–80 m s21 (Hildebrand et al. 1996; Bell et al. 2013), which
are rarely exceeded in weather observations. Thanks to this
capability, the ELDORA dataset does not usually contain ve-
locity folding errors, but not all TDRs have MUDVs as high
as ELDORA. Unfolding of velocity data is an automated pro-
cess that works well in the absence of nonmeteorological clut-
ter. An earlier version of this technique was employed to QC
data collected by the TDR aboard the NOAA P-3 as it

FIG. 6. A range–height indicator scan from the ELDORA radar plotted with Py-ART (Helmus and Collis 2016) showing the (a) interac-
tive, (b) MLQC, and (c) raw velocity fields at 2127 UTC 6 Sep 2005. (d) A horizontal cross section at 2-km altitude of reflectivity (colors;
dBZ) and analyzed winds (vectors) using interactively QCed data centered at 2123 UTC. (e) A vertical cross section taken from west to
east through the most intense convection, showing the reflectivity (color shading) and vertical wind component (black contours, in 1 m s21

intervals). (f),(g) The same analysis as in (d) and (e), but using the ML method for QC. The path of the radar beam from the scan in
(a)–(c) is shown as a white line in (f), and location of the cross section is shown as a dashed cyan line in (d).
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observed Hurricane Michael (2018) during its rapid intensifi-
cation (DesRosiers et al. 2022). Wind speeds in the storm
were well in excess of the 25.6 m s21 (Beven et al. 2019) of
the TDR in the scanning mode used in 2018 (Gamache et al.
1997). Pairing the MLQC method, trained on interactive QC
of this radar, with automated velocity unfolding allowed for
the production of research quality dual-Doppler analyses
(DesRosiers 2020). Success of this method despite the addi-
tion of velocity folding issues demonstrated the adaptability
of this method to current radars. Future efforts to apply this
method more broadly to the current generation of NOAA
TDR radars and the future Airborne Phased Array Radar
(APAR) that is in development (Vivekanandan et al. 2014)
will require a large sample of interactively QCed radar data
from multiple experts in a wider variety of convective phe-
nomena to provide the confidence level of the ELDORA
MLQC experiment described in this study.

The calculated model performance metrics (Fig. 4) should
be evaluated with the caveat that the model is tasked with
classifying more difficult weather versus nonweather radar
gates. Subterranean data and data of lower quality was re-
moved in the preprocessing step when NCP and probability
of ground gate thresholds were applied. Nearly half of the
data were removed from the ELDORA dataset, which were
most likely exclusively nonweather data. Given the simplicity
with which these data are removed, the model should be capa-
ble of doing so if trained with all data. However, limiting the
radar data allows the model to focus on making the more dif-
ficult and important classifications that must be made in man-
ual interactive QC.

5. Conclusions

A random-forest machine learning model has been devel-
oped to aid in the quality control of airborne radar through
identification of nonmeteorological data. The method was
trained on data collected in four separate field projects sampling
different convective weather systems interactively QCed by dif-
ferent researchers. The ML model performed well on the with-
held testing set data with 96% and 92.9% correct classification
of nonweather and weather echoes, respectively, after easily re-
jected data were removed. The testing set results indicate good
discrimination ability and a promising step toward reduction of
effort required to perform dual-Doppler analyses. Tests on pre-
viously unseen data from Hurricane Ophelia (2005) collected
during the RAINEX field campaign produced slightly lower
classification accuracy but still correctly classified 94.5% of non-
weather and 91.8% of weather echoes. Wind fields calculated
from the ML and interactively QCed data are very similar, sug-
gesting the method has practical applicability to produce the de-
sired scientific end product with reduced time and effort for
researchers. Simple hyperparameter tuning provided an effec-
tive number and depth of decision trees that allowed for good
performance while limiting model overfitting. An earlier ver-
sion of the technique was used with more recent P-3 TDR data
with velocity folding issues present. The technique is capable of
successful identification of weather and nonweather data even
when velocity folding errors are present. A more exhaustive

dataset is required to evaluate the generalizability of the QC
technique in varied convective phenomena with folded velocity
data present. The complex decision-making ability of the ran-
dom forest to effectively combine predictors provides an advan-
tage over previous automated approaches that rely primarily on
thresholds of independent predictors. Replacing interactive QC
methods with an automated ML technique should reduce the
time and effort burdens on researchers who analyze air-
borne Doppler radar.

This study provides a proof of concept for the ability of an
automated ML technique to recreate the interactive QC of
ELDORA airborne radar data, paving the way toward a gener-
alized method for other airborne radars with additional training
and tuning. The method described herein offers adaptability to
other radars due to its pointwise yet contextual classification
that uses predictors available on current scanning tail Doppler
radars. The algorithm infrastructure also easily allows for addi-
tions such as polarimetric radar variables as predictors when
they become available for future radars. Continued effort should
focus on increased performance and generalization ability as
well as decreased computational time with the goal of meeting
real-time data assimilation time windows for numerical model
guidance. Assimilation of airborne radar observations has been
shown to improve tropical cyclone guidance with a trade-off
between higher-quality data improving intensity forecasts and
greater data coverage decreasing track errors (Zhang et al.
2012). Continued improvements to the method capable of retain-
ing high-quality data with good coverage offers an opportunity
to improve weather forecasts by more effectively assimilating air-
borne radar data in the future.
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