

What does it entail, and How do I use it?

Great Lakes Dredging Team Meeting September 2023

Karen Keil

Unclassified

The quest for a beneficial use testing manual began...

Beneficial Use of Dredged Material Workshop, Duluth MN **November 2014**

Unclassified

Annual Meeting

June 10, 2019

Great Lakes Beneficial Use Testing Manual

- Objective is to support beneficial use of dredged material by developing a standard approach for evaluating the environmental suitability of dredged material for beneficial uses.
- Recognizing that beneficial use of dredged material projects support regional remediation and restoration efforts throughout the Great Lakes

US Army Corps of Engineers® Engineer Research and Development Center

Dredging Operations Technical Support Program

Environmental Evaluation and Management of Dredged Material for Beneficial Use

SERDE

A Regional Beneficial Use Testing Manual for the Great Lakes

Karen G. Keil, Trudy J. Estes, Joseph P. Kreitinger, Guilherme R. Lotufo, August 2022 Richard A. Price, Burton C. Suedel, Michael W. Habberfield, Bryan A. Hinterberger, Andrew M. Lenox, Scott W. Pickard, Martin P. Wargo, Jason M. Miller, Jennifer A. Miller, and Paul R. Schroeder

Approved for public release; distribution is unlimited.

The manual was **published in August 2022**

https://www.lre.usace.army.mil/Missions/ Great-Lakes-Information/Great-Lakes-Dredging-Team/Publications/

https://dots.el.erdc.dren.mil/guidance.html

https://budm.el.erdc.dren.mil/guidance.html

This manual is dedicated to Mr. Tony Friona,

who was an early proponent of the beneficial use of dredged material to support remedial and restoration efforts across the Great Lakes. Officially, Tony served as the USACE Regional Working Group co-lead for the Great Lakes Restoration Initiative. Unofficially, he was so much more: a visionary colleague and friend who, with his contagious enthusiasm, inspired us to work together to better our region. **His light will continue to shine on in the work that we do and in the relationships we form along the way.**

Great Lakes Beneficial Use Testing Manual Sections

- 1. Historical context and Great Lakes-specific perspective
- 2. Provides regulatory considerations and requirements
- 3. Aligns **beneficial use categories** with evaluations
- 4. Provides **risk-based framework** for evaluations
- 5. Draws on existing GLTM / ITM for aquatic pathway evaluations
- 6. Aligns upland evaluations with state-specific environmental frameworks and USEPA guidance
- 7. Describes risk management options

APPENDICES

Great Lakes Beneficial Use Testing Manual APPENDICES

- A. Sources of regional soil / sediment background concentrations
- B. State Environmental Guidance and Regulations for Beneficial Use
- C. Ecological Soil Screening Levels (Eco-SSLs) Plant Pathway
- D. Treatment of Impaired Sediments
- E. Water Management for Upland Placement of Dredged Material
- F. Interpreting Laboratory Bioaccumulation Test Results on Dredged Sediment Proposed for Open-Water Placement

Dredged Material → Make it Your Business

2. State policies for beneficial use

- Some states have policies in place regarding beneficial placement of dredged material
- In other states, upland beneficial use of dredged material may fall under the purview of solid waste regulations

SIAIE					Localio
Department of Environmental Conservation	Recreation	Nature	Prevent & Control Pollution	Regulatory	News & Learning

Home » Chemical and Pollution Control » Recycling and Composting » Recycling for Businesses » Beneficial Use Determinations (BUDs)

Beneficial Use Determinations (BUDs)

A Beneficial Use Determination (BUD) is a designation made by the Department pursuant to 6 NYCRR Part 360.12, whether Parts 360-365 Solid Waste Management Regulations have jurisdiction over waste material which is to be beneficially used. Once the Department grants a BUD, the waste material ceases to be considered a solid waste (for the purposes of Parts 360-365) when used as described in the BUD.

Great Lakes Beneficial Use Testing Manual Highlights

Section 3. Beneficial Use Categories

Aquatic (comply with Clean Dielet Stedment Management Type 1995-2011 & upland undefined or not Beach or nearshoke nourishment and described beach nourishment confined 5% underwater Shallow water for wettand or confined Cover of impaged sci emediation and/or aquatic habitat restoration 10% **Upland** (follow state regulations and/or USEPA risk assessment guidance) Brownfield re-development Figure 2. Navigation dredging by Corps-operated dredges and Corps contract dredges between Figure 2. Navigation dredging by Corps-operated dredges and Corps contract dredges between

Ecological habitat

Fiscal Years 1995 and 2011 (DIS database 29 February 2012 with "actual cv" sorted as preferred volume estimate).

Agricultural field amendment

US Army Corps of Engineers ®

Risk Based Framework for Beneficial Use Evaluations

Evaluation protocols circa 1998

Tier	<u>Sediment Evaluation</u> : Contaminant Determination (CWA)
I	Initial Evaluation and Determination of Exclusions
II	Screening potential impacts
III	Testing potential impacts
IV	Site-specific risk assessment

Crosswalk between traditional tiers and risk-based processes

Tier	<u>Sediment Evaluation</u> : Contaminant Determination (CWA)	New! Risk-Based Process
I	Initial Evaluation and Determination of Exclusions	Develop project goals and Conceptual Site Models
II	Screening potential impacts	Chemical analysis and modeling
III	Testing potential impacts	Bioassays and/or additional site-specific exposure assumptions
IV	Site-specific risk assessment	Site-specific evaluations

Crosswalk between traditional tiers and risk-based processes

00	Tier	Piek-Based Process	Aquatic	Pathways	Upland Pathways		
		Misk-Dased 1 Tocess	Water Column	Benthic Exposure	Human Health	Environmental Health	
		Develop project goals and Conceptual Site Models	Comparison to placement/reference site sediment concentrations		Comparison to placement/reference site soil concentrations		
	II	Chemical analysis and modeling	Elutriate chemistry, dispersion/dilution modeling	Theoretical bioaccumulation potential	Comparison to generic soil screening levels	Modeling and/or further chemical analysis	
	111	Bioassays and/or additional site- specific exposure assumptions	Elutriate toxicity tests	Sediment toxicity and bioaccumulation tests	Site-specific risk- based screening levels, modeling or extractions	Soil toxicity Bioaccumulation Plant growth and uptake tests	
	IV	Site-specific evaluations	Site-specific sampl evalu	ing, analysis, and/or Jations	Site-specific sampling, analysis, and/or evaluations		

Risk Based Framework for Beneficial Use Evaluations

Begin Tiered Evaluations (Sections 5.2.1 and 6.1.1). Develop management goals (Section 4.2) consistent with Engineering With Nature principles (Section 1.1). Define area, depth, and volume to be dredged. Collect and summarize any existing data, including historical information (Section 5.1 and 6.1.1). Consider regulatory compliance.

Develop a conceptual site model (Section 4.3) based on knowledge of the sediment, the area and site specific conditions. Include stakeholders at the earliest opportunity to identify potential beneficial uses (Section 3). Establish criteria for exposure pathways.

Document available data, pre-existing conditions at the dredging site, any conclusions that can be made (Section 4.4) as part of the initial evaluation.

Making Sediment Beneficial Use Decisions: A Risk-Based Approach

> Document alternatives and advance other aspects of project planning (NEPA, detailed design, permitting, cost evaluation, and risk management plan; Section 4.4).

YES

At the conclusion of the initial evaluation, are sufficient data available to make a risk-based determination of an appropriate placement

option, including all data needed for permitting and design (aquatic, Section 5.2.1; upland, Section 6.2.1.1)?

NO

Advance to next step/tier of evaluation (Sections 5 and 6). Develop a sampling strategy for the pathways identified in the conceptual model (Section 4.5). Key components may include physical, engineering, chemical, and agronomic data, water quality data regarding potential water discharges, biological testing results and interpretation, and reference and background selection and comparison considerations (Section 4.6).

Prepare sampling plan using appropriate level of evaluation or tier (Section 4.5). Important considerations include: the number and location of samples, the analyses needed, quality control/quality assurance, representative sampling methods, equipment needed to obtain samples, and laboratory reporting limits. Determine appropriate evaluation methods (Sections 5 and 6) for guiding the development of a sampling plan (1).

> Obtain sampling results and evaluate data using all available lines of evidence. Interpret results using a risk-based approach (see Section 5 for aquatic and Section 6 for upland).

Document the chosen alternative and advance project planning (NEPA, detailed design, permitting, cost evaluation, etc.). Document management plan (if needed) including all engineering and operational controls to manage or adaptively manage risks (Section 7).

Making Sediment Beneficial Use Decisions: A Risk-Based Approach (continued)

6. Upland Beneficial Use Evaluation Methods

	Ecological Exposure Pathways for Upland Placement Scenarios								
Tier	Direct contact	Inhalation (volatiles or particulates)	Run-off to surface water (aquatic life)	Leachate (groundwater and surface water seepage)	Plant bioaccumulation and consumption				
Tier I: Existing Information	С	Comparison to regional or reference unimpacted (<i>background</i>) sediment and also soil concentrations. Evaluate particle size.							
Tier II: Screening Level Assessment	Bulk sediment chemistry: Comparison to (adjusted ¹) ecological soil screening levels	Estimate volatile emissions using bulk sediment chemistry, total organic carbon, Kd, Koc, Henry's Law constants, diffusivities in air, bulk density of dredged material	Bulk sediment chemistry, total organic carbon, Kd, KOC: Predict porewater concentrations ² , apply basic mixing considerations, Compare to surface water quality criteria	Bulk sediment chemistry, total organic carbon, Kd, KOC: Predict porewater concentrations ² , apply basic mixing considerations, Compare to surface water quality criteria	Diethylene- triaminepentaacetic acid (DTPA) extract				
Tier III: Effects-Based Chemical and Biological Testing Screening level ecological risk assessment Conduct Volatile Flux Chambe Test		Modified Elutriate Test, Simplified Laboratory Runoff Procedure, or Synthetic Precipitation Leachate Procedure: Compare to surface water quality criteria	Sequential Batch Leaching Test: Compare to surface water quality criteria	Plant bioaccumulation test; Compare to screening levels derived according to Appendix C ²					
Tier IV: Site-Specific Risk Assessment and Relative Risk and Benefit Analysis	d Site-specific assessment of ecological impacts								

Table 6-1a. Summary of upland pathway procedures for environmental protection.

			······	in beneficial be				
	Human Health Exposure Pathways for Upland Placement Scenarios							
Tier	Direct contact	Inhalation (volatiles or particulates)	Ingestion of crops	Ingestion of game	Drinking water (surface water source)	Drinking water (groundwater source)	Ingestion of fish (surface water runoff) ¹	
Tier I: Existing Information	Comparison to regional or reference unimpacted (background) sediment and also soil concentrations, evaluate particle size.						uate particle size.	
Tier II: Screening Level Assessment	Comparison to generic USEPA and state-specific risk-based soil screening levels ² for residential and/or industrial use	Comparison to generic USEPA and state- specific risk- based soil screening levels for residential and/or industrial use, inhalation pathway only	DTPA extract	TBP calculation	Bulk sediment chemistry, total organic carbon, Kd, Koc: Predict runoff concentrations ³ , apply basic mixing considerations, and compare to USEPA Safe Drinking Water Act Levels	Bulk sediment chemistry, total organic carbon, Kd, K _{oc} : Predict porewater concentrations ³ , apply basic mixing considerations, and compare to USEPA Safe Drinking Water Act Levels	Bulk sediment chemistry, total organic carbon, Kd, Koc: Predict runoff concentrations, apply basic mixing considerations, and compare to surface water quality criteria for protection of human health, fish consumption	
Tier III: Effects- Based Chemical and Biological Testing	Comparison to scenario— specifically modified soil screening levels	Conduct Volatile Flux Chamber Test	Plant bioaccumu- lation test	Animal bioaccumu- lation test	Modified Elutriate Test, Simplified Laboratory Runoff Procedure, or Synthetic Precipitation Leachate Procedure: Compare to USEPA Safe Drinking Water Act Levels	Sequential Batch Leaching Test: Compare to USEPA Safe Drinking Water Act Levels	Modified Elutriate Test, Simplified Laboratory Runoff Procedure, or Synthetic Precipitation Leachate Procedure: Compare to surface water quality criteria for protection of human health, fish consumption	
Tier IV: Site-Specific Risk Assessment and Relative Risk and Benefit Analysis		•	Scenario and/	or site-specific a	assessment of human he	alth risks4	· · ·	

Table 6-1b. Summary of upland pathway procedures for human health.

Great Lakes Beneficial Use Testing Manual Highlights

7. Risk Management

- ✓ Uncertainty vs. risk
- ✓ Operational, engineering, and institutional controls
- ✓ Adaptive management

Appendices supporting risk managementD. Treatment of impaired sedimentsE. Water management for upland placements

Figure 7-1.

Operational and engineering controls relevant to water column exposure pathway for aquatic placement

Great Lakes Beneficial Use Testing Manual Highlights

Appendix A: Sources of Soil and Sediment Background (Reference) Concentrations in the Great Lakes States

Comparison of background concentrations across the region

Great Lakes Beneficial Use Testing Manual Highlights

Appendix B: Great Lakes State Environmental Guidance and Regulations for Beneficial Use of Dredged Material

- Responsible state agencies and POCs
 Processes for determining suitability for upland uses
- ✓ Web links for regulations and guidance

Use of the Great Lakes Beneficial Use Testing Manual

Refer to this manual when your beneficial use project is developing a Quality Assurance Project Plan for sampling and evaluations.

Harmonize the recommendations in this Manual with state or other agency's perspectives on environmental evaluations.

