Skip to main content
Log in

Treatment for Malignant Pheochromocytomas and Paragangliomas: 5 Years of Progress

  • Sarcomas (SR Patel, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this manuscript is to review the progress in the field of therapeutics for malignant pheochromocytomas and sympathetic paraganglioma (MPPG) over the past 5 years.

Recent Findings

The manuscript will describe the clinical predictors of survivorship and their influence on the first TNM staging classification for pheochromocytomas and sympathetic paragangliomas, the treatment of hormonal complications, and the rationale that supports the resection of the primary tumor and metastases in patients with otherwise incurable disease. Therapeutic options for patients with bone metastasis to the spine will be presented. The manuscript will also review chemotherapy and propose a maintenance regimen with dacarbazine for patients initially treated with cyclophosphamide, vincristine, and dacarbazine. Finally, the manuscript will review preliminary results of several phase 2 clinical trials of novel radiopharmaceutical agents and tyrosine kinase inhibitors.

Summary

MPPGs are very rare neuroendocrine tumors. MPPGs are usually characterized by a large tumor burden, excessive secretion of catecholamines, and decreased overall survival. Recent discoveries have enhanced our knowledge of the pathogenesis and phenotypes of MPPG. This knowledge is leading to a better understanding of the indications and limitations of the currently available localized and systemic therapies as well as the development of phase 2 clinical trials for novel medications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •Of importance

  1. Lenders JW, Pacak K, Walther MM, Linehan WM, Mannelli M, Friberg P, et al. Biochemical diagnosis of pheochromocytoma: which test is best? JAMA. 2002;287(11):1427–34.

    Article  CAS  PubMed  Google Scholar 

  2. Brito JP, Asi N, Gionfriddo MR, Norman C, Leppin AL, Zeballos-Palacios C, et al. The incremental benefit of functional imaging in pheochromocytoma/paraganglioma: a systematic review. Endocrine. 2015;50(1):176–86. https://doi.org/10.1007/s12020-015-0544-7.

    Article  CAS  PubMed  Google Scholar 

  3. Lenders JW, Duh QY, Eisenhofer G, Gimenez-Roqueplo AP, Grebe SK, Murad MH, et al. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014;99(6):1915–42. https://doi.org/10.1210/jc.2014-1498.

    Article  CAS  PubMed  Google Scholar 

  4. Ayala-Ramirez M, Feng L, Johnson MM, Ejaz S, Habra MA, Rich T, et al. Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators. J Clin Endocrinol Metab. 2011;96(3):717–25. https://doi.org/10.1210/jc.2010-1946.

    Article  CAS  PubMed  Google Scholar 

  5. Jimenez C, Rohren E, Habra MA, Rich T, Jimenez P, Ayala-Ramirez M, et al. Current and future treatments for malignant pheochromocytoma and sympathetic paraganglioma. Curr Oncol Rep. 2013;15(4):356–71. https://doi.org/10.1007/s11912-013-0320-x.

    Article  PubMed  Google Scholar 

  6. Baudin E, Habra MA, Deschamps F, Cote G, Dumont F, Cabanillas M, et al. Therapy of endocrine disease: treatment of malignant pheochromocytoma and paraganglioma. Eur J Endocrinol. 2014;171(3):R111–22. https://doi.org/10.1530/EJE-14-0113.

    Article  CAS  PubMed  Google Scholar 

  7. van Hulsteijn LT, Niemeijer ND, Dekkers OM, Corssmit EP. (131)I-MIBG therapy for malignant paraganglioma and phaeochromocytoma: systematic review and meta-analysis. Clin Endocrinol. 2014;80(4):487–501. https://doi.org/10.1111/cen.12341.

    Article  CAS  Google Scholar 

  8. Dahia PL. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat Rev Cancer. 2014;14(2):108–19. https://doi.org/10.1038/nrc3648.

    Article  CAS  PubMed  Google Scholar 

  9. • Roman-Gonzalez A, Zhou S, Ayala-Ramirez M, Shen C, Waguespack SG, Habra MA, Karam JA, Perrier N, Wood CG, Jimenez C (2017) Impact of surgical resection of the primary tumor on overall survival in patients with metastatic pheochromocytoma or sympathetic paraganglioma. Ann Surg. https://doi.org/10.1097/SLA.0000000000002195. This study describes the benefits derived from the surgical resection of the primary tumor in patients with advanced disease. The study compared patients treated with surgery with those not treated surgically. Surgical resection of the primary was associated with overall survival improvement.

  10. Roman-Gonzalez A, Jimenez C (2017) Malignant pheochromocytoma-paraganglioma: pathogenesis, TNM staging, and current clinical trials. Curr Opin Endocrinol Diabetes Obes. https://doi.org/10.1097/MED.0000000000000330.

  11. Hescot S, Leboulleux S, Amar L, Vezzosi D, Borget I, Bournaud-Salinas C, et al. One-year progression-free survival of therapy-naive patients with malignant pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2013;98(10):4006–12. https://doi.org/10.1210/jc.2013-1907.

    Article  CAS  PubMed  Google Scholar 

  12. Park J, Song C, Park M, Yoo S, Park SJ, Hong S, et al. Predictive characteristics of malignant pheochromocytoma. Korean J Urol. 2011;52(4):241–6. https://doi.org/10.4111/kju.2011.52.4.241.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Press D, Akyuz M, Dural C, Aliyev S, Monteiro R, Mino J, et al. Predictors of recurrence in pheochromocytoma. Surgery. 2014;156(6):1523–1527; discussion 1527-1528. https://doi.org/10.1016/j.surg.2014.08.044.

    Article  PubMed  Google Scholar 

  14. Khadilkar K, Sarathi V, Kasaliwal R, Pandit R, Goroshi M, Malhotra G, et al. Predictors of malignancy in patients with pheochromocytomas/paragangliomas: Asian Indian experience. Endocr Connect. 2016;5(6):89–97. https://doi.org/10.1530/EC-16-0086.

    Article  PubMed  PubMed Central  Google Scholar 

  15. • Jimenez C, Libutti SK, Landry CS, Lloyd RV, McKay RR, Rohren E, Seethala RR, Wang TS, Chen H, Perrier ND (2017) Adrenal-Neuroendocrine Tumors. In: Amin MB (ed) AJCC cancer staging manual. 8th edn. Springer, New York, pp 919–927. The first TNM staging system for patients with pheochromocytomas and paragangliomas.

  16. Letouze E, Martinelli C, Loriot C, Burnichon N, Abermil N, Ottolenghi C, et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell. 2013;23(6):739–52. https://doi.org/10.1016/j.ccr.2013.04.018.

    Article  CAS  PubMed  Google Scholar 

  17. Loriot C, Burnichon N, Gadessaud N, Vescovo L, Amar L, Libe R, et al. Epithelial to mesenchymal transition is activated in metastatic pheochromocytomas and paragangliomas caused by SDHB gene mutations. J Clin Endocrinol Metab. 2012;97(6):E954–62. https://doi.org/10.1210/jc.2011-3437.

    Article  CAS  PubMed  Google Scholar 

  18. Amar L, Baudin E, Burnichon N, Peyrard S, Silvera S, Bertherat J, et al. Succinate dehydrogenase B gene mutations predict survival in patients with malignant pheochromocytomas or paragangliomas. J Clin Endocrinol Metab. 2007;92(10):3822–8. https://doi.org/10.1210/jc.2007-0709.

    Article  CAS  PubMed  Google Scholar 

  19. Burnichon N, Buffet A, Parfait B, Letouze E, Laurendeau I, Loriot C, et al. Somatic NF1 inactivation is a frequent event in sporadic pheochromocytoma. Hum Mol Genet. 2012;21(26):5397–405. https://doi.org/10.1093/hmg/dds374.

    Article  CAS  PubMed  Google Scholar 

  20. Fishbein L, Nathanson KL (2017) Pheochromocytoma and paraganglioma susceptibility genes: estimating the associated risk of disease. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2017.0222.

  21. Castro-Vega LJ, Buffet A, De Cubas AA, Cascon A, Menara M, Khalifa E, et al. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum Mol Genet. 2014;23(9):2440–6. https://doi.org/10.1093/hmg/ddt639.

    Article  CAS  PubMed  Google Scholar 

  22. Thosani S, Ayala-Ramirez M, Palmer L, MI H, Rich T, Gagel RF, et al. The characterization of pheochromocytoma and its impact on overall survival in multiple endocrine neoplasia type 2. J Clin Endocrinol Metab. 2013;98(11):E1813–9. https://doi.org/10.1210/jc.2013-1653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Burnichon N, Cascon A, Schiavi F, Morales NP, Comino-Mendez I, Abermil N, et al. MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18(10):2828–37. https://doi.org/10.1158/1078-0432.CCR-12-0160.

    Article  CAS  Google Scholar 

  24. Yao L, Schiavi F, Cascon A, Qin Y, Inglada-Perez L, King EE, et al. Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas. JAMA. 2010;304(23):2611–9. https://doi.org/10.1001/jama.2010.1830.

    Article  CAS  PubMed  Google Scholar 

  25. Ayala-Ramirez M, Palmer JL, Hofmann MC, de la Cruz M, Moon BS, Waguespack SG, et al. Bone metastases and skeletal-related events in patients with malignant pheochromocytoma and sympathetic paraganglioma. J Clin Endocrinol Metab. 2013;98(4):1492–7. https://doi.org/10.1210/jc.2012-4231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Plouin PF, Fitzgerald P, Rich T, Ayala-Ramirez M, Perrier ND, Baudin E, et al. Metastatic pheochromocytoma and paraganglioma: focus on therapeutics. Horm Metab Res. 2012;44(5):390–9. https://doi.org/10.1055/s-0031-1299707.

    Article  CAS  PubMed  Google Scholar 

  27. Thosani S, Ayala-Ramirez M, Roman-Gonzalez A, Zhou S, Thosani N, Bisanz A, et al. Constipation: an overlooked, unmanaged symptom of patients with pheochromocytoma and sympathetic paraganglioma. Eur J Endocrinol. 2015;173(3):377–87. https://doi.org/10.1530/EJE-15-0456.

    Article  CAS  PubMed  Google Scholar 

  28. Buhl T, Mortensen J, Kjaer A. I-123 MIBG imaging and intraoperative localization of metastatic pheochromocytoma: a case report. Clin Nucl Med. 2002;27(3):183–5.

    Article  PubMed  Google Scholar 

  29. Keiser HR, Goldstein DS, Wade JL, Douglas FL, Averbuch SD. Treatment of malignant pheochromocytoma with combination chemotherapy. Hypertension. 1985;7(3 Pt 2):I18–24.

    Article  CAS  PubMed  Google Scholar 

  30. Niemeijer ND, Alblas G, van Hulsteijn LT, Dekkers OM, Corssmit EP. Chemotherapy with cyclophosphamide, vincristine and dacarbazine for malignant paraganglioma and pheochromocytoma: systematic review and meta-analysis. Clin Endocrinol. 2014;81(5):642–51. https://doi.org/10.1111/cen.12542.

    Article  CAS  Google Scholar 

  31. Ayala-Ramirez M, Feng L, Habra MA, Rich T, Dickson PV, Perrier N, et al. Clinical benefits of systemic chemotherapy for patients with metastatic pheochromocytomas or sympathetic extra-adrenal paragangliomas: insights from the largest single-institutional experience. Cancer. 2012;118(11):2804–12. https://doi.org/10.1002/cncr.26577.

    Article  CAS  PubMed  Google Scholar 

  32. Grogan RH, Mitmaker EJ, Duh QY. Changing paradigms in the treatment of malignant pheochromocytoma. Cancer Control J Moffitt Cancer Cent. 2011;18(2):104–12.

    Article  Google Scholar 

  33. Tay CG, Lee VW, Ong LC, Goh KJ, Ariffin H, Fong CY (2017) Vincristine-induced peripheral neuropathy in survivors of childhood acute lymphoblastic leukaemia. Pediatr Blood Cancer. https://doi.org/10.1002/pbc.26471.

  34. Kavcic M, Koritnik B, Krzan M, Velikonja O, Prelog T, Stefanovic M, Debeljak M, Jazbec J (2017) Electrophysiological studies to detect peripheral neuropathy in children treated with vincristine. J Pediatr Hematol Oncol. https://doi.org/10.1097/MPH.0000000000000825.

  35. Hadoux J, Favier J, Scoazec JY, Leboulleux S, Al Ghuzlan A, Caramella C, et al. SDHB mutations are associated with response to temozolomide in patients with metastatic pheochromocytoma or paraganglioma. Int J Cancer. 2014;135(11):2711–20. https://doi.org/10.1002/ijc.28913.

    Article  CAS  PubMed  Google Scholar 

  36. Tournigand C, Cervantes A, Figer A, Lledo G, Flesch M, Buyse M, et al. OPTIMOX1: a randomized study of FOLFOX4 or FOLFOX7 with oxaliplatin in a stop-and-go fashion in advanced colorectal cancer—a GERCOR study. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24(3):394–400. https://doi.org/10.1200/JCO.2005.03.0106.

    Article  CAS  Google Scholar 

  37. Barlesi F, Scherpereel A, Rittmeyer A, Pazzola A, Ferrer Tur N, Kim JH, et al. Randomized phase III trial of maintenance bevacizumab with or without pemetrexed after first-line induction with bevacizumab, cisplatin, and pemetrexed in advanced nonsquamous non-small-cell lung cancer: AVAPERL (MO22089). J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(24):3004–11. https://doi.org/10.1200/JCO.2012.42.3749.

    Article  CAS  Google Scholar 

  38. Oza AM, Cook AD, Pfisterer J, Embleton A, Ledermann JA, Pujade-Lauraine E, et al. Standard chemotherapy with or without bevacizumab for women with newly diagnosed ovarian cancer (ICON7): overall survival results of a phase 3 randomised trial. Lancet Oncol. 2015;16(8):928–36. https://doi.org/10.1016/S1470-2045(15)00086-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gulenchyn KY, Yao X, Asa SL, Singh S, Law C. Radionuclide therapy in neuroendocrine tumours: a systematic review. Clin Oncol. 2012;24(4):294–308. https://doi.org/10.1016/j.clon.2011.12.003.

    Article  CAS  Google Scholar 

  40. Baez JC, Jagannathan JP, Krajewski K, O'Regan K, Zukotynski K, Kulke M, et al. Pheochromocytoma and paraganglioma: imaging characteristics. Cancer Imaging Off Publ Int Cancer Imaging Soc. 2012;12:153–62. https://doi.org/10.1102/1470-7330.2012.0016.

    Google Scholar 

  41. Basu S, Abhyankar A, Jatale P. The current place and indications of 131I-metaiodobenzylguanidine therapy in the era of peptide receptor radionuclide therapy: determinants to consider for evolving the best practice and envisioning a personalized approach. Nucl Med Commun. 2015;36(1):1–7. https://doi.org/10.1097/MNM.0000000000000209.

    Article  PubMed  Google Scholar 

  42. Loh KC, Fitzgerald PA, Matthay KK, Yeo PP, Price DC. The treatment of malignant pheochromocytoma with iodine-131 metaiodobenzylguanidine (131I-MIBG): a comprehensive review of 116 reported patients. J Endocrinol Investig. 1997;20(11):648–58.

    Article  CAS  Google Scholar 

  43. Shapiro B, Sisson JC, Wieland DM, Mangner TJ, Zempel SM, Mudgett E, et al. Radiopharmaceutical therapy of malignant pheochromocytoma with [131I]metaiodobenzylguanidine: results from ten years of experience. J Nucl Biol Med. 1991;35(4):269–76.

    CAS  PubMed  Google Scholar 

  44. Rose B, Matthay KK, Price D, Huberty J, Klencke B, Norton JA, et al. High-dose 131I-metaiodobenzylguanidine therapy for 12 patients with malignant pheochromocytoma. Cancer. 2003;98(2):239–48. https://doi.org/10.1002/cncr.11518.

    Article  CAS  PubMed  Google Scholar 

  45. Gonias S, Goldsby R, Matthay KK, Hawkins R, Price D, Huberty J, et al. Phase II study of high-dose [131I]metaiodobenzylguanidine therapy for patients with metastatic pheochromocytoma and paraganglioma. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(25):4162–8. https://doi.org/10.1200/JCO.2008.21.3496.

    Article  CAS  Google Scholar 

  46. Barrett JA, Joyal JL, Hillier SM, Maresca KP, Femia FJ, Kronauge JF, et al. Comparison of high-specific-activity ultratrace 123/131I-MIBG and carrier-added 123/131I-MIBG on efficacy, pharmacokinetics, and tissue distribution. Cancer Biother Radiopharm. 2010;25(3):299–308. https://doi.org/10.1089/cbr.2009.0695.

    Article  CAS  PubMed  Google Scholar 

  47. Coleman RE, Stubbs JB, Barrett JA, de la Guardia M, Lafrance N, Babich JW. Radiation dosimetry, pharmacokinetics, and safety of ultratrace iobenguane I-131 in patients with malignant pheochromocytoma/paraganglioma or metastatic carcinoid. Cancer Biother Radiopharm. 2009;24(4):469–75. https://doi.org/10.1089/cbr.2008.0584.

    Article  CAS  PubMed  Google Scholar 

  48. • Jimenez C, Pryma DA, Sullivan DC, Schwarz JK, Noto RB, Stambler N, Armor T, Jensen JJ, Israel RJ ( 2015) Long term follow-up of a pivotal phase 2 study of Ultratrace® iobenguane I-131 (AZEDRATM) in patients with malignant relapsed/refractory pheochromocytoma (Pheo)/paraganglioma (Para). Endocrine Society’s 97th Annual Meeting and Expo, March 5–8, 2015 - San Diego. This abstract described the preliminary results of the phase 2 study of patients with MPPG treated with Ultratrace iobenguan I-131. The results showed that treatment caused sustained blood pressure control in 35% of patients. Ultratrace was associated with partial responses and stable disease in more than 90% of patients.

  49. Hoy SM. Cabozantinib: a review of its use in patients with medullary thyroid cancer. Drugs. 2014;74(12):1435–44. https://doi.org/10.1007/s40265-014-0265-x.

    Article  CAS  PubMed  Google Scholar 

  50. Scott LJ. Lenvatinib: first global approval. Drugs. 2015;75(5):553–60. https://doi.org/10.1007/s40265-015-0383-0.

    Article  CAS  PubMed  Google Scholar 

  51. Ayala-Ramirez M, Chougnet CN, Habra MA, Palmer JL, Leboulleux S, Cabanillas ME, et al. Treatment with sunitinib for patients with progressive metastatic pheochromocytomas and sympathetic paragangliomas. J Clin Endocrinol Metab. 2012;97(11):4040–50. https://doi.org/10.1210/jc.2012-2356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Choueiri TK, Halabi S, Sanford BL, Hahn O, Michaelson MD, Walsh MK, et al. Cabozantinib versus sunitinib as initial targeted therapy for patients with metastatic renal cell carcinoma of poor or intermediate risk: the Alliance A031203 CABOSUN Trial. J Clin Oncol Off J Am Soc Clin Oncol. 2017;35(6):591–7. https://doi.org/10.1200/JCO.2016.70.7398.

    Article  Google Scholar 

  53. Smith M, De Bono J, Sternberg C, Le Moulec S, Oudard S, De Giorgi U, et al. Phase III study of cabozantinib in previously treated metastatic castration-resistant prostate cancer: COMET-1. J Clin Oncol Off J Am Soc Clin Oncol. 2016;34(25):3005–13. https://doi.org/10.1200/JCO.2015.65.5597.

    Article  CAS  Google Scholar 

  54. Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10(12):2298–308. https://doi.org/10.1158/1535-7163.MCT-11-0264.

    Article  CAS  PubMed  Google Scholar 

  55. • Jimenez C, Waguespack S, Habra MA, Busaidy N, Dadu R, Tamsen G, Jessop A (2017) A phase 2 clinical trial with cabozantinib for patients with malignant pheochromocytoma and paraganglioma: preliminary results. The University of Texas MD Anderson Cancer Center, Oral Presentation, Global Academic Programs Symposium, Houston. Preliminary results of this phase 2 study described an objective response rate of 45%, with clinical benefits observed in 91% of patients. No serious adverse events were reported. PFS was 11 months.

  56. Vogel J, Atanacio AS, Prodanov T, Turkbey BI, Adams K, Martucci V, et al. External beam radiation therapy in treatment of malignant pheochromocytoma and paraganglioma. Front Oncol. 2014;4:166. https://doi.org/10.3389/fonc.2014.00166.

    Article  PubMed  PubMed Central  Google Scholar 

  57. • Patchell RA, Tibbs PA, Regine WF, Payne R, Saris S, Kryscio RJ, et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet. 2005;366(9486):643–8. https://doi.org/10.1016/S0140-6736(05)66954-1. This study demonstrated that patients with spine metastases treated with decompressive surgical resection followed by radiation therapy had better outcomes than patients treated with radiation therapy alone.

    Article  PubMed  Google Scholar 

  58. Sahgal A, Larson DA, Chang EL. Stereotactic body radiosurgery for spinal metastases: a critical review. Int J Radiat Oncol Biol Phys. 2008;71(3):652–65. https://doi.org/10.1016/j.ijrobp.2008.02.060.

    Article  PubMed  Google Scholar 

  59. Wang XS, Rhines LD, Shiu AS, Yang JN, Selek U, Gning I, et al. Stereotactic body radiation therapy for management of spinal metastases in patients without spinal cord compression: a phase 1-2 trial. Lancet Oncol. 2012;13(4):395–402. https://doi.org/10.1016/S1470-2045(11)70384-9.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yamada Y, Bilsky MH, Lovelock DM, Venkatraman ES, Toner S, Johnson J, et al. High-dose, single-fraction image-guided intensity-modulated radiotherapy for metastatic spinal lesions. Int J Radiat Oncol Biol Phys. 2008;71(2):484–90. https://doi.org/10.1016/j.ijrobp.2007.11.046.

    Article  PubMed  Google Scholar 

  61. Bilsky MH, Laufer I, Burch S. Shifting paradigms in the treatment of metastatic spine disease. Spine (Phila Pa 1976). 2009;34(22 Suppl):S101–7. https://doi.org/10.1097/BRS.0b013e3181bac4b2.

    Article  Google Scholar 

  62. Sahgal A, Bilsky M, Chang EL, Ma L, Yamada Y, Rhines LD, et al. Stereotactic body radiotherapy for spinal metastases: current status, with a focus on its application in the postoperative patient. J Neurosurg Spine. 2011;14(2):151–66. https://doi.org/10.3171/2010.9.SPINE091005.

    Article  PubMed  Google Scholar 

  63. Fisher CG, DiPaola CP, Ryken TC, Bilsky MH, Shaffrey CI, Berven SH, et al. A novel classification system for spinal instability in neoplastic disease: an evidence-based approach and expert consensus from the Spine Oncology Study Group. Spine (Phila Pa 1976). 2010;35(22):E1221–9. https://doi.org/10.1097/BRS.0b013e3181e16ae2.

    Article  Google Scholar 

  64. Fisher CG, Versteeg AL, Schouten R, Boriani S, Varga PP, Rhines LD, et al. Reliability of the spinal instability neoplastic scale among radiologists: an assessment of instability secondary to spinal metastases. AJR Am J Roentgenol. 2014;203(4):869–74. https://doi.org/10.2214/AJR.13.12269.

    Article  PubMed  Google Scholar 

  65. Fisher CG, Schouten R, Versteeg AL, Boriani S, Varga PP, Rhines LD, et al. Reliability of the Spinal Instability Neoplastic Score (SINS) among radiation oncologists: an assessment of instability secondary to spinal metastases. Radiat Oncol. 2014;9:69. https://doi.org/10.1186/1748-717X-9-69.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Burton AW, Rhines LD, Mendel E. Vertebroplasty and kyphoplasty: a comprehensive review. Neurosurg Focus. 2005;18(3):e1.

    Article  PubMed  Google Scholar 

  67. Moussazadeh N, Rubin DG, McLaughlin L, Lis E, Bilsky MH, Laufer I. Short-segment percutaneous pedicle screw fixation with cement augmentation for tumor-induced spinal instability. Spine J. 2015;15(7):1609–17. https://doi.org/10.1016/j.spinee.2015.03.037.

    Article  PubMed  Google Scholar 

  68. Akeyson EW, McCutcheon IE. Single-stage posterior vertebrectomy and replacement combined with posterior instrumentation for spinal metastasis. J Neurosurg. 1996;85(2):211–20. https://doi.org/10.3171/jns.1996.85.2.0211.

    Article  CAS  PubMed  Google Scholar 

  69. Sciubba DM, Gallia GL, McGirt MJ, Woodworth GF, Garonzik IM, Witham T, et al. Thoracic kyphotic deformity reduction with a distractible titanium cage via an entirely posterior approach. Neurosurgery. 2007;60(4 Suppl 2):223–230; discussion 230-221. https://doi.org/10.1227/01.NEU.0000255385.18335.A8.

    PubMed  Google Scholar 

  70. Xu R, Garces-Ambrossi GL, McGirt MJ, Witham TF, Wolinsky JP, Bydon A, et al. Thoracic vertebrectomy and spinal reconstruction via anterior, posterior, or combined approaches: clinical outcomes in 91 consecutive patients with metastatic spinal tumors. J Neurosurg Spine. 2009;11(3):272–84. https://doi.org/10.3171/2009.3.SPINE08621.

    Article  PubMed  Google Scholar 

  71. Bilsky MH, Laufer I, Fourney DR, Groff M, Schmidt MH, Varga PP, et al. Reliability analysis of the epidural spinal cord compression scale. J Neurosurg Spine. 2010;13(3):324–8. https://doi.org/10.3171/2010.3.SPINE09459.

    Article  PubMed  Google Scholar 

  72. Laufer I, Rubin DG, Lis E, Cox BW, Stubblefield MD, Yamada Y, et al. The NOMS framework: approach to the treatment of spinal metastatic tumors. Oncologist. 2013;18(6):744–51. https://doi.org/10.1634/theoncologist.2012-0293.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Laufer I, Iorgulescu JB, Chapman T, Lis E, Shi W, Zhang Z, et al. Local disease control for spinal metastases following “separation surgery” and adjuvant hypofractionated or high-dose single-fraction stereotactic radiosurgery: outcome analysis in 186 patients. J Neurosurg Spine. 2013;18(3):207–14. https://doi.org/10.3171/2012.11.SPINE12111.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo Jimenez.

Ethics declarations

Conflict of Interest

Paola Jimenez, Claudio Tatsui, Aaron Jessop, Sonali Thosani, and Camilo Jimenez declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Sarcomas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jimenez, P., Tatsui, C., Jessop, A. et al. Treatment for Malignant Pheochromocytomas and Paragangliomas: 5 Years of Progress. Curr Oncol Rep 19, 83 (2017). https://doi.org/10.1007/s11912-017-0643-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-017-0643-0

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy