Kadmium

kémiai elem, rendszáma 48, vegyjele Cd
Ez a közzétett változat, ellenőrizve: 2022. október 31.

A kadmium (nyelvújításkori magyar nevén: kadany) az átmenetifémek közé tartozó kémiai elem. A rendszáma 48, a vegyjele Cd. Friedrich Stromeyer német kémikus fedezte fel 1817-ben, miután felfigyelt arra, hogy a hevítés hatására egyes cink-karbonát (ZnCO3) kristályok színe megváltozik. A színváltó kristályokból kinyert új fémnek a kalamin jelentésű latin cadmia szóból képzett 'cadmium' nevet adta.[3] A szó közvetve Kadmosz, Théba alapítójának nevéből származik.[4]

48 ezüstkadmiumindium
Zn

Cd

Hg
   
               
               
                                   
                                 
                                                               
                                                               
   
48
Cd
Általános
Név, vegyjel, rendszám kadmium, Cd, 48
Latin megnevezés cadmium
Elemi sorozat átmenetifémek
Csoport, periódus, mező 12, 5, d
Megjelenés ezüstszürke fémes
Atomtömeg 112,411(4) g/mol[1]
Elektronszerkezet [Kr] 4d10 5s2
Elektronok héjanként 2, 8, 18, 18, 2
Fizikai tulajdonságok
Halmazállapot szilárd
Sűrűség (szobahőm.) 8,65 g/cm³
Sűrűség (folyadék) az o.p.-on 7,996 g/cm³
Olvadáspont 594,22 K
(321,07 °C, 609,93 °F)
Forráspont 1040 K
(767 °C, 1413 °F)
Olvadáshő 6,21 kJ/mol
Párolgáshő 99,87 kJ/mol
Moláris hőkapacitás (25 °C) 26,020 J/(mol·K)
Gőznyomás
P/Pa 1 10 100 1 k 10 k 100 k
T/K 530 583 654 745 867 1040
Atomi tulajdonságok
Kristályszerkezet hexagonális
Oxidációs szám 2
(gyengén bázikus oxid)
Elektronegativitás 1,69 (Pauling-skála)
Ionizációs energia 1.: 867,8 kJ/mol
2.: 1631,4 kJ/mol
3.: 3616 kJ/mol
Atomsugár 155 pm
Atomsugár (számított) 161 pm
Kovalens sugár 148 pm
Van der Waals-sugár 158 pm
Egyebek
Mágnesség diamágneses[2]
Elektromos ellenállás (22 °C) 72,7 nΩ·m
Hővezetési tényező (300 K) 96,6 W/(m·K)
Hőtágulási együttható (25 °C) 30,8 µm/(m·K)
Hangsebesség (vékony rúd) (20 °C) 2310 m/s
Young-modulus 50 GPa
Nyírási modulus 19 GPa
Kompressziós modulus 42 GPa
Poisson-tényező 0,30
Mohs-keménység 2,0
Brinell-keménység 203 HB
CAS-szám 7440-43-9
Fontosabb izotópok
Fő cikk: A kadmium izotópjai
izotóp természetes előfordulás felezési idő bomlás
mód energia (MeV) termék
106Cd 1,25% >4,1·1020 év (β+β+) - 106Pd
107Cd mest. 6,5 óra ε 1,417 107Ag
108Cd 0,89% >4,1·1017 év (β+β+) 0,272 108Pd
109Cd mest. 462,6 nap ε 0,214 109Ag
110Cd 12,49% - (SF) <22,486
111Cd 12,8% - (SF) <21,883
112Cd 24,13% - (SF) <20,733
113Cd 12,22% 7,7·1015 év β 0,316 113In
113mCd mest. 14,1 év β 0.580 113In
IT 0,264 113Cd
114Cd 28,73% >6,4·1018 év (ββ) 0,540 114Sn
115Cd mest. 53,46 óra β 1,446 115In
116Cd 7,49% 3,1·1019 év ββ 2,809 116Sn
A zárójelben megadott bomlási módok elméleti előrejelzések, azokat kísérletileg még nem figyelték meg
Hivatkozások

Története

szerkesztés

A kadmiumot Friedrich Stromeyer és Carl Samuel Herm egymástól függetlenül fedezte fel 1817-ben. Stromeyer megfigyelte, hogy az általa vizsgált cink-karbonát hevítés hatására elszíneződött. A tiszta cink-karbonát nem viselkedik így. Csaknem 100 éven át egyedül Németországban termeltek kadmiumot.

A kadmium elnevezést már a középkorban használták, feltehetően a cinkre. Például II. Frigyes 1226-ban feljogosította a lavanttali Szent Pál Benedek-rendi kolostort arra, hogy „ut Cadmiae tam argentj quam plumbi et ferri, que in territorio ipsius monasteri de cetero inveniri contigerint, ad opus suum”, magyarul: „hogy annak a kolostornak a területén a továbbiakban fellelt cinket, ezüstöt, ólmot és vasat a kolostor saját céljaira használják”.[5]

Mérgező volta miatt a British Pharmaceutical Codex 1907-ben a kadmium-jodidot ajánlotta a megdagadt ízületekre (enlarged joints), skrufulusos mirigyekre (scrofulous glands) és fagyásra (chilblains).

1907-ben a Nemzetközi Csillagászati Unió az ångströmöt az 1 atmoszféra nyomású, 15 °C-os és 0,03%-os szén-dioxid tartalmú száraz levegőben a kadmium egy vörös színképvonalának hullámhosszának 1/6438,4696-odrészeként határozta meg. 1960-ban a General Conference on Weights and Measures ugyanezt a színképvonalat használta a méter alternatív definíciójának megadásához; a méter hossza ennek 1 553 164,13-szerese.

1942-ben Enrico Fermi ki-be húzogatható kadmiumrudakat használt atomreaktorához. Ezekkel a rudakkal lehetett az első (ember által alkotott) atomreaktort szabályozni, mivel a kadmium elnyelte a lassított neutronokat, ezzel csökkentette a reaktor aktivitását.

Előfordulása

szerkesztés

Igen ritka elem, átlagos gyakorisága a földkéregben 0,15 g/t (0,000015%).[6] Leggyakrabban a cinket, ritkábban az ólmot helyettesíti azok ásványaiban – a Zn/Cd arány csaknem mindig a 80 és 800 közötti tartományban marad. Önálló ásványai rendkívül ritkák: ezekben a földkéreg összes kadmiumtartalmának kevesebb mint 1%-a fordul elő. Közülük messze a legismertebb és leggyakoribb az így is ritkaságnak számító greenockit (CdS). A terméskadmium nagyon ritka, eddig csak két darabot találtak belőle a jakutföldi Wiljui-medencében és Nevada államban.[7] Iparilag hasznosítható kadmium gyakorlatilag csak a cink-, ritkábban az ólom- és még ritkábban az ónércekben található, néhány relatív %-nyi mennyiségben. Szinte kizárólag a cinkkohászat melléktermékeként nyerik ki – a szfalerit átlagos Zn/Cd aránya körülbelül 400, de az egyes metallogéniai övekben ettől elég jelentősen eltérhet.

A legfontosabb kadmiumtermelő országok (2009-ben):

másodlagos jelentőségű:

kisebb mennyiségeket termelnek további 15 országban.

Előállítása

szerkesztés

A kadmium főként a cinktermelés melléktermékeként adódik, de keletkezik az ólom és a réz termelése során is. Kisebb mennyiséget a vas és az acél újrahasznosításából nyernek.

Az előállítás módja attól függ, miképp nyerik a cinket. A száraz eljárásban a két fém elválasztásához a forráspont különbségét használják ki. Mivel a kadmium forráspontja alacsonyabb, ezért könnyebben gőzöl el, és máshol reagál az oxigénnel, mint a cink. Végül ezt a keveréket koksszal elegyítik, és a kadmiumot ledesztillálják a cinkről. Frakcionált desztillációval a fémek tovább tisztíthatók.

A nedves eljárásban az oldatban levő kadmiumionokat cinkporral redukálják és választják ki. A keletkező kadmiumot oxigénnel oxidálják, és kénsavban oldják. Ebből a kadmium-szulfát oldatból alumíniumanóddal és ólomkatóddal végzett elektrolízissel választják ki a kadmiumot.

Tulajdonságai

szerkesztés

Fizikai tulajdonságai

szerkesztés

Puha, kovácsolható, ezüstfényű fém. Közepes tisztaságú lemezei hajtogatva az ónhoz hasonló zörejeket adnak.

A természetben 8 izotópja fordul elő. Ezek relatív gyakoriságai (tömeg%):

  • 106Cd – 1,25%,
  • 108Cd – 0,89%,
  • 110Cd – 12,49%,
  • 111Cd – 12,80%,
  • 112Cd – 24,13%,
  • 113Cd – 12,22%,
  • 114Cd – 28,73%,
  • 116Cd – 7,49%.[8]

Kémiai tulajdonságai

szerkesztés

Levegőn fennmarad, de melegebb környezetben sötétebb oxidréteg keletkezik rajta. Lúgokban az oxidréteg oldhatatlan, kénsavban és sósavban nehezen, salétromsavban könnyen oldódik.

Vegyületeiben többnyire két vegyértékkel fordul elő. Reakcióiban a cinkhez hasonló, de könnyebben képez komplexeket, amiknek koordinációs száma négy. Pirosas-sárgás lánggal ég kadmium-oxid létrejöttével, ami szintén erősen mérgező – ezt a vegyületet a második világháborúban az Amerikai Egyesült Államokban mint lehetséges vegyi fegyvert tanulmányozták.[9]

A sárga kadmium-szulfid, a piros kadmium-szelenid és a fekete kadmium-tellurid fontos II-VI félvezető. Nanotechnológiailag kvantumpontként állítják elő, és a biokémiában in vitro vizsgálatokhoz használják őket.

Kimutatása

szerkesztés

A kadmium kimutatására szolgáló eljárás első lépésében a mintát egy nehezen olvadó üvegcsőben hevítik.[10] A keletkező szulfid-oxid keveréket nátrium-oxaláttal fémmé redukálják. A könnyen gőzölgő kadmium a cső felső végében csapódik le.

 

További kén hozzáadására és további hevítésre a fémtükörből és a kénből kadmium-szulfid keletkezik, ami felhevítve vörös, szobahőmérsékleten sárga. Ez a színváltozás többször is megismétlődik.

 

A kadmiumionok szulfidoldattal vagy kén-hidrogénes vízzel képzett sárga csapadékukkal mutathatók ki. Más nehézfémek ionjai zavarhatják ezt a próbát, ezért előzőleg szét kell választani őket.

A kadmiumnyomok mennyiségének jelzésére a polarográfia ad lehetőséget.[11] Az ultranyomtartományban higanyelektródos inverzvoltammetria használható.[12] Eredményes lehet a grafitcsöves atomspektrometria is; ezzel a technikával a kadmium már 0,003 µg/l koncentrációban is kimutatható.[13]

Vegyületei

szerkesztés

A kadmium fontosabb vegyületei a következők:

Oxidok és hidroxidok

szerkesztés

Halogenidek

szerkesztés

Kalkogenidek

szerkesztés

Egyéb vegyületek

szerkesztés

Veszélyei

szerkesztés

A kadmium melléktermékként keletkezik a cink, a réz és az ólom kinyerése közben. Trágyákban és rovarirtókban is fellelhető. Legfőbb veszélye, hogy képes helyettesíteni az esszenciális cinket, annak jótékony élettani hatása nélkül. Mivel erősen toxikus, a Zn helyébe beépülve súlyos károsodásokat okoz.

Felvétele

szerkesztés

A kadmium főként a táplálékkal jut az emberi szervezetbe. Kadmiummal leginkább szennyezett élelmiszerek a máj, a gombák, a kagylók és más puhatestűek, a tengeri moszat és a lenmag. Ezért korlátozzák 20 grammban a lenmag napi adagját. A műtrágya bevezetése óta azonban a kadmium feldúsult a mezőgazdasági területeken, így minden élelmiszerbe bejuthat. A foszfátforrások szegényesek, és a legtöbb előfordulás nehézfémekkel vagy sugárzó anyagokkal szennyezett. A növények sokáig elviselik a magas Cd-tartalmat, ezért a kadmium könnyen bekerülhet az állati és emberi táplálékláncba jóval azelőtt, hogy maguk a növények láthatóan károsodnának. Sok ipari ország ezért határértéket vezetett be a trágya kadmiumtartalmára.[14]

Az emberi és állati szervekben a Cd felhalmozódik, így krónikusan toxikussá válik. Az emberek számára külön Cd-forrás a dohányzás, ami az akkumulációt is erősíti (folyamatos Cd-felvétel). A krónikus Cd-toxicitás tünetei közül megemlítendő a szív- és veseelégtelenség, a magas vérnyomás. Fokozott veszélynek vannak kitéve a sok kadmiumot kibocsátó gyárakban dolgozók, de az illegális hulladéklerakók is növelik a veszélyt. Belélegzése súlyosan károsítja a tüdőt, így akár halált is okozhat. Az ipari katasztrófák és az évtizedekig tartó szennyezés hatásai valós veszélyekre mutatnak rá (Guangdong, itai-itai-kór, Gressenich-betegség).

Az emberi szervezetben okozott károk

szerkesztés

A kadmium 5%-ban szívódik fel a belekben. Vas- és kalciumhiány esetén ez az arány megnő, mivel a három fém ugyanazzal a transzporttal szívódik fel. A kadmium a májban fokozza a metallothioneinek szintézisét, amikkel komplexet képez. A vérkeringéssel a vesébe jutó kadmiumot a vese visszajuttatja a vérbe, ami újra fokozza a metallothioneinek szintézisét, ezzel több kadmiumot köt meg. A vesében felhalmozódó kadmium a szerv károsodásához és fehérjevizeléshez vezet.

A kadmium a csontokat is károsítja, mivel azokból kihajtja a kalciumot. A belekben is verseng a kalciummal. Emellett a kadmium a kalcitriol szintézisét is blokkolja. Ez ahhoz kell, hogy aktiválja a kalciumhoz kötődő fehérjéket. Összesítve mind a felszívódást, mind a csontokban maradást, mind a visszaszívódást akadályozza.

  • hasmenés, gyomorfájás és heves hányás
  • vesekárosodás
  • csontritkulás, csonttörés
  • a központi idegrendszer károsodása
  • az immunrendszer károsodása
  • a szaporítószervek károsodása, terméketlenség
  • pszichés zavarok
  • gyaníthatóan a DNS sérülése, rák
  • a szaglás elvesztése

Biztonsági intézkedések

szerkesztés

A kadmiumot „nagyon mérgezőként”, vegyületeit „mérgezőként” vagy „nagyon mérgezőként” tartják számon. Gyaníthatóan rákkeltőek. A kadmiumtartalmú por belélegezve károsítja a tüdőt, a májat és a vesét.

Jól szellőzőnek kell lenniük, vagy légelszívásról kell gondoskodni azokban a helyiségekben, ahol felhevített kadmiumvegyületekkel dolgoznak. Az Európai Unió rendelkezései szerint a műanyagokban a kadmiumra vonatkozó határérték 0,01 tömegszázalék. A következőkben még szigorúbb rendelkezések bevezetését tervezik.[15][16]

Felhasználása

szerkesztés

A kadmiumot korrózióvédelemre, akkumulátorcellák elektródjának, atommaghasadás szabályozására, könnyen olvadó ötvözetek előállítására, a napelemgyártásban (tellúrral ötvözve), festékek készítésére alkalmazzák. 2011 decemberétől az Európai Unió betiltotta a kadmium használatát ékszerekben, ötvözetekben és PVC-ben.[17] További felhasználási területek:

  • kadmium-szulfid és kadmium-szelenid festékanyag lakkokhoz és műanyagokhoz. Ennek kisebb a gyakorlati jelentősége, mivel egészségkárosodást okozhat, különösen a megfelelő cikkek égetésekor.
  • fékekben súrlódó anyag
  • kadmium-oxid világító festék fekete-fehér katódsugárcsőben, kék és zöld katódsugárcsőben
  • szabályozórúd atomreaktorokban
  • nagy energiájú gamma-sugárzás forrása
  • kadmium-szulfid fényességmérőkben, amik az emberi szemhez hasonlóan mérik a fényességet
  • kadmium-tellurid infravörös kamerákban
  • kadmium-sztearát stabilizátor műanyagokban
  • Weston-normálelem egy volt előállítására
  • kadmium-bizmut ötvözet olvadóbiztosítékhoz
  • aranyzöld ékszerek: arany-kadmium ötvözet
  • ezüst-kadmium ötvözet dezoxidálószerként Sterling-ezüsthöz
  • kadmiumlámpa
  • hélium-kadmium lézer
  • elektrofiziológiában feszültségaktív kalciumcsatornák blokkolására
  • üveg színezése sárgára, narancssárgára és vörösre
  1. Current Table of Standard Atomic Weights in Order of Atomic Number. Commission on Isotopic Abundances and Atomic Weights – Commission II.I of the International Union of Pure and Applied Chemistry, 2013. (Hozzáférés: 2013. október 13.)
  2. Magnetic susceptibility of the elements and inorganic compounds Archiválva 2012. január 12-i dátummal a Wayback Machine-ben, Handbook of Chemistry and Physics 81st edition, CRC press.
  3. Mineral Information Institute: Cadmium. [2010. február 18-i dátummal az eredetiből archiválva]. (Hozzáférés: 2010. február 22.)
  4. Fülöp József: Rövid kémiai értelmező és etimológiai szótár. Celldömölk: Pauz–Westermann Könyvkiadó Kft. 1998. 71. o. ISBN 963 8334 96 7  
  5. Beda Schroll in: Fontes Rerum Austriacarum. Band XXXIX, Wien 1876, Urkunde Nr. 50, S. 117–118.
  6. WEBELEMENTS, 2010: the periodic table on the web 2010. II. 22-i állapot
  7. Cadmium bei mindat.org (engl.)
  8. Isotopic compositions of the elements 2009. Commission on Isotopic Abundances and Atomic Weights – Commission II.I of the International Union of Pure and Applied Chemistry. (Hozzáférés: 2014. április 11.)
  9. The Problem of Chemical and Biological Warfare. 76–77. o. ISBN 91-85114-16-2  
  10. Eberhard Gerdes: Qualitative Anorganische Analyse. 2. Auflage, Springer, Berlin/Heidelberg 2001,  64–65.
  11. J. Heyrovský, P. Zuman: Einführung in die praktische Polarographie. VEB Verlag Technik, Berlin 1959,  179.
  12. R. Neeb: Inverse Polarographie und Voltammetrie. Akademie-Verlag, Berlin 1969,  192.
  13. G. Schwedt: Analytische Chemie. Thieme Verlag, Stuttgart 1995,  197.
  14. IGBCE. Stellungnahme der IG Bergbau, Chemie, Energie zum Entwurf für eine EU-weite Regelung des Europäischen Parlamentes und Rates für Cadmium in Düngemitteln[halott link]
  15. 2011 decemberétől
  16. 2012 decemberétől Europäische Rechtsänderungen. In: Umwelt Magazin. Heft 7/8 201, 52.
  17. EU-Aktuell (20. Mai 2011): EU verbietet Cadmium in Schmuck
  • Arnold F. Holleman, Nils Wiberg: Lehrbuch der Anorganischen Chemie. 102. Auflage, de Gruyter, Berlin 2007, ISBN 978-3-11-017770-1.
  • Hans Breuer: dtv-Atlas Chemie 1. Allgemeine und anorganische Chemie. 10. Auflage, Dtv, München 2006, ISBN 3-423-03217-0.

További információk

szerkesztés
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy