Premier ordinal non dénombrable

En mathématiques, le premier ordinal non dénombrable, noté ω₁ ou parfois Ω, est le plus petit ordinal non dénombrable ; c'est aussi l'ensemble des ordinaux finis ou infinis dénombrables. En d'autres termes, c'est l'ordinal de Hartogs de tout ensemble infini dénombrable.

Principales propriétés

modifier

ω₁ est le supremum de tous les ordinaux au plus dénombrables ; ce sont ses éléments.

Comme tout ordinal (dans l'approche de von Neumann), ω₁ est un ensemble bien ordonné, la relation d'ordre étant la relation d'appartenance : ∈. C'est un ordinal limite, c'est-à-dire qu'il n'est pas de la forme α + 1.

Le cardinal de l'ensemble ω₁ est le deuxième nombre cardinal infini et est noté ℵ₁ (aleph-1). L'ordinal ω₁ est donc l'ordinal initial de ℵ₁. Dans la plupart des constructions, ω₁ et ℵ₁ sont égaux en tant qu'ensembles. Plus généralement : si α est un ordinal arbitraire, on peut définir ωα comme l'ordinal initial du cardinal ℵα.

On peut démontrer l'existence de ω₁ sans l'axiome du choix (voir l'article Ordinal de Hartogs).

Espace topologique associé

modifier

Tout ordinal α peut être muni de la topologie de l'ordre. Cet espace topologique associé à α est souvent noté [0, α[, car c'est l'espace de tous les ordinaux strictement inférieurs à α. L'espace [0, ω₁[ est utilisé pour définir la longue droite et la planche de Tychonoff, deux contre-exemples importants en topologie.

L'espace [0, ω₁[ n'est pas compact. Son compactifié d'Alexandrov est [0, ω₁] = ω₁ + 1. Dans [0, ω₁], l'élément ω₁ n'a pas de base de voisinages dénombrable. Par conséquent, le compact [0, ω₁] n'est pas parfaitement normal (le fermé {ω₁} n'est pas un Gδ).

En termes d'axiomes de dénombrabilité (en), [0, ω₁[ est un espace à bases dénombrables de voisinages (donc séquentiel) et n'est pas séparable (donc pas à base dénombrable d'ouverts).

Puisque l'ordinal supremum (i. e. la réunion) d'un ensemble dénombrable d'ordinaux dénombrables est encore dénombrable, l'espace [0, ω₁[ est ω-borné (en) (c'est-à-dire que toute partie dénombrable de [0, ω₁[ est relativement compacte) donc séquentiellement compact (puisqu'il est de plus à bases dénombrables de voisinages) donc dénombrablement compact donc pseudo-compact (en) (c'est-à-dire que toute fonction continue de [0, ω₁[ vers ℝ est bornée).

Toute fonction continue de [0, ω₁[ vers ℝ (ou vers n'importe quel espace de Lindelöf séparé à bases dénombrables de voisinages) est même constante à partir d'un certain point[1]. Par conséquent, le compactifié d'Alexandrov de ω₁ est aussi son compactifié de Stone-Čech.

Comme [0, ω₁[ n'est pas compact, il n'est ni de Lindelöf (puisqu'il est dénombrablement compact), ni métrisable (d'après le théorème de Bolzano-Weierstrass). Il n'est même pas paracompact, mais il est monotonement normal.

Références

modifier
  1. (en) David Gauld, Non-metrisable Manifolds, Springer, (lire en ligne), p. 195.

Articles connexes

modifier
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy