Skip to main content
Log in

The attractive Coulomb potential polynomials

  • Published:
Constructive Approximation Aims and scope

Abstract

TheJ matrix method in quantum mechanics developed by Heller, Reinhardt, and Yamani points to a set of orthogonal polynomials having a nonempty continuous spectrum in addition to an infinite discrete spectrum. Asymptotic methods are used to investigate the spectral properties of these polynomials. We also obtain generating functions for both numerator and denominator polynomials. The corresponding continued fraction is computed and the Stieltjes inversion formula is used to determine the distribution function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Al-Salam, W. R. Allaway, R. A. Askey (1984):Sieved ultraspherical polynomials. Trans. Amer. Math. Soc.,284: 39–55.

    Google Scholar 

  2. R. A. Askey, M. E. H. Ismail (1984):Recurrence relations, continued fractions and orthogonal polynomials. Memoirs Amer. Math. Soc. Number 300, 108 pages.

    Google Scholar 

  3. J. T. Broad (1978):Gauss quadrature generated by diagonalization of H infinite L 2 bases. Phys. Rev.,A 18:1012–1027.

    Google Scholar 

  4. T. S. Chihara (1978): An Introduction to Orthogonal Polynomials. New York: Gordon and Breach.

    Google Scholar 

  5. E. J. Heller, W. P. Reinhardt, H. A. Yamani (1973):On an equivalent quadrature calculation of matrix elements of (z−P 2/2m)−1 using an L 2 expansion technique. J. Comp. Phys.,13:536–549.

    Google Scholar 

  6. M. E. H. Ismail (1985):On sieved orthogonal polynomials, SIAM J. Math. Anal.16, in press.

  7. K. Jörgens, F. Rellich (1976): Eigenwerttheorie Gewohnlicher Differentialgleichungen. Berlin: Springer-Verlag.

    Google Scholar 

  8. F. W. J. Olver (1974): Introduction to Asymptotics and Special Functions. New York: Academic Press.

    Google Scholar 

  9. F. Pollaczek (1949):Sur une generalisation des polynomes de Legendre. Comptes Rendus de l'Académie des Sciences (Paris),228:1363–1365.

    Google Scholar 

  10. F. Pollaczek (1956):Sur une generalisation des polynomes de Jacobi. Memorial des Sciences Mathematiques, Paris: Gauthier-Villars.

    Google Scholar 

  11. E. D. Rainville (1960): Special Functions. New York: Chelsea.

    Google Scholar 

  12. F. Rellich (1978):Spectral Theory of Second Order Differential Operators. New York: Institute of Mathematics and Mechanics.

    Google Scholar 

  13. J. Shohat, J. P. Tamarkin (1950):The Problem of Moments. Providence: Amer. Math. Soc. (Math. Surveys, vol. 1).

  14. G. Szegö (1950):On certain sets of orthogonal polynomials. Proc. Amer. Math. Soc,1:731–737.

    Google Scholar 

  15. G. Szegö (1975):Orthogonal Polynomials. Providence: Amer. Math. Soc. (A.M.S Colloquium Publications, vol. XXII, 4th ed.).

    Google Scholar 

  16. H. S. Wall (1948): Analytic Theory of Continued Fractions. New York: D. van Nostrand.

    Google Scholar 

  17. H. A. Yamani, W. P. Reinhardt (1975):L 2 discretization of the continuum: radial kinetic energy and Coulomb Hamiltonian. Phys. Rev.,A 11:1144–1155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Paul Nevai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bank, E., Ismail, M.E.H. The attractive Coulomb potential polynomials. Constr. Approx 1, 103–119 (1985). https://doi.org/10.1007/BF01890025

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01890025

AMS classification

Key words and phrases

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy