Abstract
TheJ matrix method in quantum mechanics developed by Heller, Reinhardt, and Yamani points to a set of orthogonal polynomials having a nonempty continuous spectrum in addition to an infinite discrete spectrum. Asymptotic methods are used to investigate the spectral properties of these polynomials. We also obtain generating functions for both numerator and denominator polynomials. The corresponding continued fraction is computed and the Stieltjes inversion formula is used to determine the distribution function.
Similar content being viewed by others
References
W. A. Al-Salam, W. R. Allaway, R. A. Askey (1984):Sieved ultraspherical polynomials. Trans. Amer. Math. Soc.,284: 39–55.
R. A. Askey, M. E. H. Ismail (1984):Recurrence relations, continued fractions and orthogonal polynomials. Memoirs Amer. Math. Soc. Number 300, 108 pages.
J. T. Broad (1978):Gauss quadrature generated by diagonalization of H infinite L 2 bases. Phys. Rev.,A 18:1012–1027.
T. S. Chihara (1978): An Introduction to Orthogonal Polynomials. New York: Gordon and Breach.
E. J. Heller, W. P. Reinhardt, H. A. Yamani (1973):On an equivalent quadrature calculation of matrix elements of (z−P 2/2m)−1 using an L 2 expansion technique. J. Comp. Phys.,13:536–549.
M. E. H. Ismail (1985):On sieved orthogonal polynomials, SIAM J. Math. Anal.16, in press.
K. Jörgens, F. Rellich (1976): Eigenwerttheorie Gewohnlicher Differentialgleichungen. Berlin: Springer-Verlag.
F. W. J. Olver (1974): Introduction to Asymptotics and Special Functions. New York: Academic Press.
F. Pollaczek (1949):Sur une generalisation des polynomes de Legendre. Comptes Rendus de l'Académie des Sciences (Paris),228:1363–1365.
F. Pollaczek (1956):Sur une generalisation des polynomes de Jacobi. Memorial des Sciences Mathematiques, Paris: Gauthier-Villars.
E. D. Rainville (1960): Special Functions. New York: Chelsea.
F. Rellich (1978):Spectral Theory of Second Order Differential Operators. New York: Institute of Mathematics and Mechanics.
J. Shohat, J. P. Tamarkin (1950):The Problem of Moments. Providence: Amer. Math. Soc. (Math. Surveys, vol. 1).
G. Szegö (1950):On certain sets of orthogonal polynomials. Proc. Amer. Math. Soc,1:731–737.
G. Szegö (1975):Orthogonal Polynomials. Providence: Amer. Math. Soc. (A.M.S Colloquium Publications, vol. XXII, 4th ed.).
H. S. Wall (1948): Analytic Theory of Continued Fractions. New York: D. van Nostrand.
H. A. Yamani, W. P. Reinhardt (1975):L 2 discretization of the continuum: radial kinetic energy and Coulomb Hamiltonian. Phys. Rev.,A 11:1144–1155.
Author information
Authors and Affiliations
Additional information
Communicated by Paul Nevai.
Rights and permissions
About this article
Cite this article
Bank, E., Ismail, M.E.H. The attractive Coulomb potential polynomials. Constr. Approx 1, 103–119 (1985). https://doi.org/10.1007/BF01890025
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01890025