Skip to main content
Log in

Mass Distribution and “Mass Gap” of Compact Stellar Remnants in Binary Systems

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract—The highest critical mass of neutron stars (NSs) was reviewed in the context of equation of state and observational results. It was predicted that the maximum NS mass (\({{M}_{{{\text{NS}}}}}\)) exists in the range \({{M}_{{{\text{NS}}}}} \approx 2.2\)\(2.9{\kern 1pt} {{M}_{ \odot }}\). However, recent observations of gravitational waves and other studied had suggested the higher mass limit of NSs, \({{M}_{{{\text{NS}}}}} \approx 3.2{\kern 1pt} {{M}_{ \odot }}\). The NS mass upto the value of \({{M}_{{{\text{NS}}}}} \approx 2{\kern 1pt} {{M}_{ \odot }}\) is well understood, and with such a mass value it was meaningful to discuss the “mass gap” (m-gap) between the NS and black hole (BH) collapsars. The “m-gap” exist in between the highest mass of NS and the lowest mass of BH collapsars (\({{M}_{{{\text{m-gap}}}}} \approx 2\)\(5{\kern 1pt} {{M}_{ \odot }}\)). In the mass distribution, the maximum population of NSs and BHs is located at \({{M}_{{{\text{NS}}}}} = 1.4{\kern 1pt} {{M}_{ \odot }}\) and \({{M}_{{{\text{BH}}}}} = 6.7{\kern 1pt} {{M}_{ \odot }}\), respectively. However, recent observational results predicted filling the “m-gap” by the compact objects. In this paper, the concept of gravidynamics was reported to resolve the problem of peak likelihood value of gravitational mass at \({{M}_{{{\text{peak}}}}} = 6.7{\kern 1pt} {{M}_{ \odot }}\) and the “m-gap” (\({{M}_{{{\text{m-gap}}}}} \approx 2\)\(5{\kern 1pt} {{M}_{ \odot }}\)). This concept was based on a non-metric scalar-tensor model of gravitational interaction with localizable field energy. The gravidynamics model shows the total mass (\({{M}_{{\text{Q}}}}\)) of a compact relativistic object filled with matter of quark-gluon plasma of the radius \(r\text{*} = G{{M}_{{\text{Q}}}}\)/c\(^{2} \approx 10\) km, consistent with the “m-gap”. It was conceptualized that the total measurable gravitational mass of such an extremely dense object consists of both matter and field, which is described by scalar-tensor components. This model is also useful for predicting the collapsars within “m-gap”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. B. P. Abbott, R. Abbott, T. D. Abbott, et al., Phys. Rev. X 9 (3), id. 031040 (2019).

  2. B. P. Abbott, R. Abbott, T. D. Abbott, et al., Astrophys. J. 892 (1), id. L3 (2020a).

  3. B. P. Abbott, R. Abbott, T. D. Abbott, et al., Classical and Quantum Gravity 37 (4), id. 045006 (2020b).

  4. R. Abbott, T. D. Abbott, S. Abraham, et al., Astrophys. J. 896 (2), id. L44 (2020c).

  5. R. Abbott, T. D. Abbott, S. Abraham, et al., Astrophys. J. 915 (1), id. L5 (2021a).

  6. R. Abbott et al. (LIGO Collab., Virgo Collab., KAGRA Collab.), arXiv e-prints astro-ph:2111.13106 (2021b).

  7. J. Alsing, H. O. Silva, and E. Berti, Monthly Notices Royal Astron. Soc. 478 (1), 1377 (2018).

    Article  ADS  Google Scholar 

  8. J. Antoniadis, P. C. C. Freire, N. Wex, et al., Science 340 (6131), 448 (2013).

    Article  ADS  Google Scholar 

  9. W. Baade and F. Zwicky, Proc. Nat. Academy of Science of the United States of America 20 (5), 259 (1934a).

    ADS  Google Scholar 

  10. W. Baade and F. Zwicky, Proc. Nat. Academy of Science of the United States of America 20 (5), 254 (1934b).

    ADS  Google Scholar 

  11. W. Baade and F. Zwicky, Phys. Rev. 46 (1), 76 (1934c).

    Article  ADS  Google Scholar 

  12. C. D. Bailyn, R. K. Jain, P. Coppi, and J. A. Orosz, Astrophys. J. 499 (1), 367 (1998).

    Article  ADS  Google Scholar 

  13. O. Barziv, L. Kaper, M. H. Van Kerkwijk, et al., Astron. and Astrophys. 377, 925 (2001).

    Article  ADS  Google Scholar 

  14. G. Baym, Nuclear Physics A 590 (1–2), 233 (1995).

    Article  ADS  Google Scholar 

  15. K. Belczynski, G. Wiktorowicz, C. L. Fryer, et al., Astrophys. J. 757 (1), 91 (2012).

    Article  ADS  Google Scholar 

  16. I. Bombaci, Astron. and Astrophys. 305, 871 (1996).

    ADS  Google Scholar 

  17. A. Burrows and D. Vartanyan, Nature 589 (7840), 29 (2021).

    Article  ADS  Google Scholar 

  18. B. D. Capano, I. Tews, S. M. Brown, et al., Nature Astronomy 4, 625 (2020).

    Article  ADS  Google Scholar 

  19. C. J. Champion, S. M. Ransom, P. Lazarus, et al., Science 320 (5881), 1309 (2008).

    Article  ADS  Google Scholar 

  20. S. Chandrasekhar, Astrophys. J. 74, 81 (1931).

    Article  ADS  Google Scholar 

  21. G. B. Cook, S. L. Shapiro, and S. A. Teukolsky, Astrophys. J. 424, 823 (1994).

    Article  ADS  Google Scholar 

  22. H. T. Cromartie, E. Fonseca, S. M. Ransom, et al., Nature Astronomy 4, 72 (2020).

    Article  ADS  Google Scholar 

  23. W. M. Farr, N. Sravan, A. Cantrell, et al., Astrophys. J. 741 (2), 103 (2011).

    Article  ADS  Google Scholar 

  24. F. J. Fattoyev, C. J. Horowitz, J. Piekarewicz, and B. Reed, Phys.Rev. C 102 (6), 065805 (2020).

    Article  ADS  Google Scholar 

  25. L. S. Finn, Phys. Rev. Lett. 73 (14), 1878 (1994).

    Article  ADS  Google Scholar 

  26. E. Fonseca, H. T. Cromartie, T. T. Pennucci, et al., Astrophys. J. 915 (1), L12 (2021).

    Article  ADS  Google Scholar 

  27. T. Fragos, V. Kalogera, K. Belczynski, et al., Astrophys. J. 683 (1), 346 (2008).

    Article  ADS  Google Scholar 

  28. T. Fragos, V. Kalogera, B. Willems, et al., Astrophys. J. 702 (2), L143 (2009).

    Article  ADS  Google Scholar 

  29. T. Fragos and J. E. McClintock, Astrophys. J. 800 (1), 17 (2015).

    Article  ADS  Google Scholar 

  30. P. C. C. Freire, S. M. Ransom, S. Bégin, et al., Astrophys. J. 675 (1), 670 (2008a).

    Article  ADS  Google Scholar 

  31. P. C. C. Freire, A. Wolszczan, M. van den Berg, and J. W. T. Hessels, Astrophys. J. 679 (2), 1433 (2008b).

    Article  ADS  Google Scholar 

  32. F. Frontera, L. Amati, J. J. M. in’t Zand, et al., Astrophys. J. 616 (2), 1078 (2004).

    Article  ADS  Google Scholar 

  33. C. L. Fryer, A. Heger, N. Langer, and S. Wellstein, Astrophys. J. 578 (1), 335 (2002).

    Article  ADS  Google Scholar 

  34. C. L. Fryer and V. Kalogera, Astrophys. J. 554 (1), 548 (2001).

    Article  ADS  Google Scholar 

  35. S. Galaudage, C. Adamcewicz, X.-J. Zhu, et al., Astrophys. J. 909 (2), L19 (2021).

    Article  ADS  Google Scholar 

  36. D. M. Gelino and T. E. Harrison, Astrophys. J. 599 (2), 1254 (2003).

    Article  ADS  Google Scholar 

  37. B. Giesers, S. Dreizler, T.-O. Husser, et al., Monthly Notices Royal Astron. Soc. 475 (1), L15 (2018).

    Article  ADS  Google Scholar 

  38. A. Gupta, D. Gerosa, K. G. Arun, et al., Phys. Rev. D 101 (10), id. 103036 (2020).

  39. T. Güver, F. Özel, A. Cabrera-Lavers, and P. Wroblewski, Astrophys. J. 712 (2), 964 (2010).

    Article  ADS  Google Scholar 

  40. M. Heida, P. G. Jonker, M. A. P. Torres, and A. Chiavassa, Astrophys. J. 846 (2), 132 (2017).

    Article  ADS  Google Scholar 

  41. H. Heiselberg and V. Pandharipande, Ann. Rev. Nuclear and Particle Science 50, 481 (2000).

    Article  ADS  Google Scholar 

  42. J. A. Irwin, Monthly Notices Royal Astron. Soc. 371 (4), 1903 (2006).

    Article  ADS  Google Scholar 

  43. H.-T. Janka, Ann. Rev. Nuclear and Particle Science 62 (1), 407 (2012).

    Article  ADS  Google Scholar 

  44. T. Jayasinghe, K. Z. Stanek, T. A. Thompson, et al., Monthly Notices Royal Astron. Soc. 504 (2), 2577 (2021).

    Article  ADS  Google Scholar 

  45. V. Kalogera and G. Baym, Astrophys. J. 470, L61 (1996).

    Article  ADS  Google Scholar 

  46. B. Kiziltan, A. Kottas, M. De Yoreo, and S. E. Thorsett, Astrophys. J. 778 (1), id. 66 (2013).

  47. W. Kluźniak, Astrophys. J. 509 (1), L37 (1998).

    Article  ADS  Google Scholar 

  48. C. S. Kochanek, Astrophys. J. 785 (1), id. 28 (2014).

  49. I. M. Kopylov and V. V. Sokolov, Sov. Astron. Lett. 10, 315 (1984).

    ADS  Google Scholar 

  50. L. Kreidberg, C. D. Bailyn, W. M. Farr, and V. Kalogera, Astrophys. J. 757 (1), id. 36 (2012).

  51. L. D. Landau, Phys. Zs. Sowjet 1, 285 (1932).

    Google Scholar 

  52. J. M. Lattimer, Ann. Rev. Nuclear and Particle Science 62 (1), 485 (2012).

    Article  ADS  Google Scholar 

  53. J. M. Lattimer and M. Prakash, Science 304 (5670), 536 (2004).

    Article  ADS  Google Scholar 

  54. J. M. Lattimer and M. Prakash, 442 (1–6), 109 (2007).

  55. T. B. Littenberg, B. Farr, S. Coughlin, et al., Astrophys. J. 807 (2), id. L24 (2015).

  56. I. Mandel, C.-J. Haster, M. Dominik, and K. Belczynski, Monthly Notices Royal Astron. Soc. 450 (1), L85 (2015).

    Article  ADS  Google Scholar 

  57. J. Mao and J. Wang, Astrophys. J. 776 (1), id. 17 (2013).

  58. B. Margalit and B. D. Metzger, Astrophys. J. 850 (2), id. L19 (2017).

  59. A. Maselli, L. Gualtieri, P. Pani, et al., Astrophys. J. 801 (2), id. 115 (2015).

  60. M. Nauenberg and J. Chapline, George, Astrophys. J. 179, 277 (1973).

    Article  ADS  Google Scholar 

  61. J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55 (4), 374 (1939).

    Article  ADS  Google Scholar 

  62. J. A. Orosz, R. K. Jain, C. D. Bailyn, et al., Astrophys. J. 499 (1), 375 (1998).

    Article  ADS  Google Scholar 

  63. J. A. Orosz, J. E. McClintock, R. A. Remillard, and S. Corbel, Astrophys. J. 616 (1), 376 (2004).

    Article  ADS  Google Scholar 

  64. F. Özel, T. Güver, and D. Psaltis, Astrophys. J. 693 (2), 1775 (2009).

    Article  ADS  Google Scholar 

  65. F. Özel, D. Psaltis, R. Narayan, and J. E. McClintock, Astrophys. J. 725 (2), 1918 (2010).

    Article  ADS  Google Scholar 

  66. F. Özel, D. Psaltis, R. Narayan, and A. Santos Villarreal, Astrophys. J. 757 (1), 55 (2012).

    Article  ADS  Google Scholar 

  67. V. S. Petrov, A. M. Cherepashchuk, and E. A. Antokhina, Astronomy Reports 58 (3), 113 (2014).

    Article  ADS  Google Scholar 

  68. P. Podsiadlowski, J. D. M. Dewi, P. Lesaffre, et al., Monthly Notices Royal Astron. Soc. 361 (4), 1243 (2005).

    Article  ADS  Google Scholar 

  69. K. A. Postnov and A. M. Cherepashchuk, Astronomy Reports 47 (12), 989 (2003).

    Article  ADS  Google Scholar 

  70. D. Psaltis, Living Reviews in Relativity 11 (1), id. 9 (2008).

  71. H. Quaintrell, A. J. Norton, T. D. C. Ash, et al., Astron. and Astrophys. 401, 313 (2003).

    Article  ADS  Google Scholar 

  72. S. M. Ransom, J. W. T. Hessels, I. H. Stairs, et al., Science 307 (5711), 892 (2005).

    Article  ADS  Google Scholar 

  73. C. E. Rhoades and R. Ruffini, Phys. Rev. Lett. 32 (6), 324 (1974).

    Article  ADS  Google Scholar 

  74. S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983).

    Book  Google Scholar 

  75. V. V. Sokolov, Sov. Astron. 31, 419 (1987).

    ADS  Google Scholar 

  76. V. V. Sokolov, Astrophys. and Space Sci. 197 (2), 179 (1992).

    Article  ADS  Google Scholar 

  77. V. V. Sokolov, Intern. J. Astron., Astrophys. and Space Science 2 (6), 51 (2015).

    Google Scholar 

  78. V. V. Sokolov, Gravidynamics and quarks (URSS, Moscow, 2019), https://urss.ru/cgi-bin/db.pl?lang=en blang=ru page=Book id#8152.

  79. V. V. Sokolov and S. V. Zharykov, Astrophys. and Space Sci. 201 (2), 303 (1993).

    Article  ADS  Google Scholar 

  80. T. A. Thompson, C. S. Kochanek, K. Z. Stanek, et al., Science 366 (6465), 637 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  81. S. E. Thorsett and D. Chakrabarty, Astrophys. J. 512 (1), 288 (1999).

    Article  ADS  Google Scholar 

  82. V. Thorsson, M. Prakash, and J. M. Lattimer, Nuclear Physics A 572 (3–4), 693 (1994).

    Article  ADS  Google Scholar 

  83. F. X. Timmes, S. E. Woosley, and T. A. Weaver, Astrophys. J. 457, 834 (1996).

    Article  ADS  Google Scholar 

  84. R. C. Tolman, Phys. Rev. 55 (4), 364 (1939).

    Article  ADS  Google Scholar 

  85. M. H. van Kerkwijk, J. van Paradijs, and E. J. Zuiderwijk, Astron. and Astrophys. 303, 497 (1995).

    ADS  Google Scholar 

  86. F. Weber, G. A. Contrera, M. G. Orsaria, et al., Modern Physics Letters A 29 (23), id. 1430022 (2014).

  87. J. M. Weisberg, D. J. Nice, and J. H. Taylor, Astrophys. J. 722 (2), 1030 (2010).

    Article  ADS  Google Scholar 

  88. R. B. Wiringa, V. Fiks, and A. Fabrocini, Phys. Rev. C 38 (2), 1010 (1988).

    Article  ADS  Google Scholar 

  89. E. Witten, Phys. Rev. D 30 (2), 272 (1984).

    Article  ADS  Google Scholar 

  90. \(\text{}\). Wyrzykowski and I. Mandel, Astron. and Astrophys. 636, id. A20 (2020).

  91. K. Yagi and L. C. Stein, Classical and Quantum Gravity 33 (5), 054001 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  92. Y. Yang, V. Gayathri, I. Bartos, et al., Astrophys. J. 901 (2), id. L34 (2020).

  93. M. Zevin, M. Spera, C. P. L. Berry, and V. Kalogera, Astrophys. J. 899 (1), id. L1 (2020).

Download references

Funding

The work was performed as part of the government contract of the SAO RAS approved by the Ministry of Science and Higher Education of the Russian Federation. The authors are grateful to T.N. Sokolova for help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Kumar or V. V. Sokolov.

Ethics declarations

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Translated by T. Sokolova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Sokolov, V.V. Mass Distribution and “Mass Gap” of Compact Stellar Remnants in Binary Systems. Astrophys. Bull. 77, 197–213 (2022). https://doi.org/10.1134/S1990341322020043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341322020043

Keywords:

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy