Abstract—The highest critical mass of neutron stars (NSs) was reviewed in the context of equation of state and observational results. It was predicted that the maximum NS mass (\({{M}_{{{\text{NS}}}}}\)) exists in the range \({{M}_{{{\text{NS}}}}} \approx 2.2\)–\(2.9{\kern 1pt} {{M}_{ \odot }}\). However, recent observations of gravitational waves and other studied had suggested the higher mass limit of NSs, \({{M}_{{{\text{NS}}}}} \approx 3.2{\kern 1pt} {{M}_{ \odot }}\). The NS mass upto the value of \({{M}_{{{\text{NS}}}}} \approx 2{\kern 1pt} {{M}_{ \odot }}\) is well understood, and with such a mass value it was meaningful to discuss the “mass gap” (m-gap) between the NS and black hole (BH) collapsars. The “m-gap” exist in between the highest mass of NS and the lowest mass of BH collapsars (\({{M}_{{{\text{m-gap}}}}} \approx 2\)–\(5{\kern 1pt} {{M}_{ \odot }}\)). In the mass distribution, the maximum population of NSs and BHs is located at \({{M}_{{{\text{NS}}}}} = 1.4{\kern 1pt} {{M}_{ \odot }}\) and \({{M}_{{{\text{BH}}}}} = 6.7{\kern 1pt} {{M}_{ \odot }}\), respectively. However, recent observational results predicted filling the “m-gap” by the compact objects. In this paper, the concept of gravidynamics was reported to resolve the problem of peak likelihood value of gravitational mass at \({{M}_{{{\text{peak}}}}} = 6.7{\kern 1pt} {{M}_{ \odot }}\) and the “m-gap” (\({{M}_{{{\text{m-gap}}}}} \approx 2\)–\(5{\kern 1pt} {{M}_{ \odot }}\)). This concept was based on a non-metric scalar-tensor model of gravitational interaction with localizable field energy. The gravidynamics model shows the total mass (\({{M}_{{\text{Q}}}}\)) of a compact relativistic object filled with matter of quark-gluon plasma of the radius \(r\text{*} = G{{M}_{{\text{Q}}}}\)/c\(^{2} \approx 10\) km, consistent with the “m-gap”. It was conceptualized that the total measurable gravitational mass of such an extremely dense object consists of both matter and field, which is described by scalar-tensor components. This model is also useful for predicting the collapsars within “m-gap”.




Similar content being viewed by others
REFERENCES
B. P. Abbott, R. Abbott, T. D. Abbott, et al., Phys. Rev. X 9 (3), id. 031040 (2019).
B. P. Abbott, R. Abbott, T. D. Abbott, et al., Astrophys. J. 892 (1), id. L3 (2020a).
B. P. Abbott, R. Abbott, T. D. Abbott, et al., Classical and Quantum Gravity 37 (4), id. 045006 (2020b).
R. Abbott, T. D. Abbott, S. Abraham, et al., Astrophys. J. 896 (2), id. L44 (2020c).
R. Abbott, T. D. Abbott, S. Abraham, et al., Astrophys. J. 915 (1), id. L5 (2021a).
R. Abbott et al. (LIGO Collab., Virgo Collab., KAGRA Collab.), arXiv e-prints astro-ph:2111.13106 (2021b).
J. Alsing, H. O. Silva, and E. Berti, Monthly Notices Royal Astron. Soc. 478 (1), 1377 (2018).
J. Antoniadis, P. C. C. Freire, N. Wex, et al., Science 340 (6131), 448 (2013).
W. Baade and F. Zwicky, Proc. Nat. Academy of Science of the United States of America 20 (5), 259 (1934a).
W. Baade and F. Zwicky, Proc. Nat. Academy of Science of the United States of America 20 (5), 254 (1934b).
W. Baade and F. Zwicky, Phys. Rev. 46 (1), 76 (1934c).
C. D. Bailyn, R. K. Jain, P. Coppi, and J. A. Orosz, Astrophys. J. 499 (1), 367 (1998).
O. Barziv, L. Kaper, M. H. Van Kerkwijk, et al., Astron. and Astrophys. 377, 925 (2001).
G. Baym, Nuclear Physics A 590 (1–2), 233 (1995).
K. Belczynski, G. Wiktorowicz, C. L. Fryer, et al., Astrophys. J. 757 (1), 91 (2012).
I. Bombaci, Astron. and Astrophys. 305, 871 (1996).
A. Burrows and D. Vartanyan, Nature 589 (7840), 29 (2021).
B. D. Capano, I. Tews, S. M. Brown, et al., Nature Astronomy 4, 625 (2020).
C. J. Champion, S. M. Ransom, P. Lazarus, et al., Science 320 (5881), 1309 (2008).
S. Chandrasekhar, Astrophys. J. 74, 81 (1931).
G. B. Cook, S. L. Shapiro, and S. A. Teukolsky, Astrophys. J. 424, 823 (1994).
H. T. Cromartie, E. Fonseca, S. M. Ransom, et al., Nature Astronomy 4, 72 (2020).
W. M. Farr, N. Sravan, A. Cantrell, et al., Astrophys. J. 741 (2), 103 (2011).
F. J. Fattoyev, C. J. Horowitz, J. Piekarewicz, and B. Reed, Phys.Rev. C 102 (6), 065805 (2020).
L. S. Finn, Phys. Rev. Lett. 73 (14), 1878 (1994).
E. Fonseca, H. T. Cromartie, T. T. Pennucci, et al., Astrophys. J. 915 (1), L12 (2021).
T. Fragos, V. Kalogera, K. Belczynski, et al., Astrophys. J. 683 (1), 346 (2008).
T. Fragos, V. Kalogera, B. Willems, et al., Astrophys. J. 702 (2), L143 (2009).
T. Fragos and J. E. McClintock, Astrophys. J. 800 (1), 17 (2015).
P. C. C. Freire, S. M. Ransom, S. Bégin, et al., Astrophys. J. 675 (1), 670 (2008a).
P. C. C. Freire, A. Wolszczan, M. van den Berg, and J. W. T. Hessels, Astrophys. J. 679 (2), 1433 (2008b).
F. Frontera, L. Amati, J. J. M. in’t Zand, et al., Astrophys. J. 616 (2), 1078 (2004).
C. L. Fryer, A. Heger, N. Langer, and S. Wellstein, Astrophys. J. 578 (1), 335 (2002).
C. L. Fryer and V. Kalogera, Astrophys. J. 554 (1), 548 (2001).
S. Galaudage, C. Adamcewicz, X.-J. Zhu, et al., Astrophys. J. 909 (2), L19 (2021).
D. M. Gelino and T. E. Harrison, Astrophys. J. 599 (2), 1254 (2003).
B. Giesers, S. Dreizler, T.-O. Husser, et al., Monthly Notices Royal Astron. Soc. 475 (1), L15 (2018).
A. Gupta, D. Gerosa, K. G. Arun, et al., Phys. Rev. D 101 (10), id. 103036 (2020).
T. Güver, F. Özel, A. Cabrera-Lavers, and P. Wroblewski, Astrophys. J. 712 (2), 964 (2010).
M. Heida, P. G. Jonker, M. A. P. Torres, and A. Chiavassa, Astrophys. J. 846 (2), 132 (2017).
H. Heiselberg and V. Pandharipande, Ann. Rev. Nuclear and Particle Science 50, 481 (2000).
J. A. Irwin, Monthly Notices Royal Astron. Soc. 371 (4), 1903 (2006).
H.-T. Janka, Ann. Rev. Nuclear and Particle Science 62 (1), 407 (2012).
T. Jayasinghe, K. Z. Stanek, T. A. Thompson, et al., Monthly Notices Royal Astron. Soc. 504 (2), 2577 (2021).
V. Kalogera and G. Baym, Astrophys. J. 470, L61 (1996).
B. Kiziltan, A. Kottas, M. De Yoreo, and S. E. Thorsett, Astrophys. J. 778 (1), id. 66 (2013).
W. Kluźniak, Astrophys. J. 509 (1), L37 (1998).
C. S. Kochanek, Astrophys. J. 785 (1), id. 28 (2014).
I. M. Kopylov and V. V. Sokolov, Sov. Astron. Lett. 10, 315 (1984).
L. Kreidberg, C. D. Bailyn, W. M. Farr, and V. Kalogera, Astrophys. J. 757 (1), id. 36 (2012).
L. D. Landau, Phys. Zs. Sowjet 1, 285 (1932).
J. M. Lattimer, Ann. Rev. Nuclear and Particle Science 62 (1), 485 (2012).
J. M. Lattimer and M. Prakash, Science 304 (5670), 536 (2004).
J. M. Lattimer and M. Prakash, 442 (1–6), 109 (2007).
T. B. Littenberg, B. Farr, S. Coughlin, et al., Astrophys. J. 807 (2), id. L24 (2015).
I. Mandel, C.-J. Haster, M. Dominik, and K. Belczynski, Monthly Notices Royal Astron. Soc. 450 (1), L85 (2015).
J. Mao and J. Wang, Astrophys. J. 776 (1), id. 17 (2013).
B. Margalit and B. D. Metzger, Astrophys. J. 850 (2), id. L19 (2017).
A. Maselli, L. Gualtieri, P. Pani, et al., Astrophys. J. 801 (2), id. 115 (2015).
M. Nauenberg and J. Chapline, George, Astrophys. J. 179, 277 (1973).
J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55 (4), 374 (1939).
J. A. Orosz, R. K. Jain, C. D. Bailyn, et al., Astrophys. J. 499 (1), 375 (1998).
J. A. Orosz, J. E. McClintock, R. A. Remillard, and S. Corbel, Astrophys. J. 616 (1), 376 (2004).
F. Özel, T. Güver, and D. Psaltis, Astrophys. J. 693 (2), 1775 (2009).
F. Özel, D. Psaltis, R. Narayan, and J. E. McClintock, Astrophys. J. 725 (2), 1918 (2010).
F. Özel, D. Psaltis, R. Narayan, and A. Santos Villarreal, Astrophys. J. 757 (1), 55 (2012).
V. S. Petrov, A. M. Cherepashchuk, and E. A. Antokhina, Astronomy Reports 58 (3), 113 (2014).
P. Podsiadlowski, J. D. M. Dewi, P. Lesaffre, et al., Monthly Notices Royal Astron. Soc. 361 (4), 1243 (2005).
K. A. Postnov and A. M. Cherepashchuk, Astronomy Reports 47 (12), 989 (2003).
D. Psaltis, Living Reviews in Relativity 11 (1), id. 9 (2008).
H. Quaintrell, A. J. Norton, T. D. C. Ash, et al., Astron. and Astrophys. 401, 313 (2003).
S. M. Ransom, J. W. T. Hessels, I. H. Stairs, et al., Science 307 (5711), 892 (2005).
C. E. Rhoades and R. Ruffini, Phys. Rev. Lett. 32 (6), 324 (1974).
S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983).
V. V. Sokolov, Sov. Astron. 31, 419 (1987).
V. V. Sokolov, Astrophys. and Space Sci. 197 (2), 179 (1992).
V. V. Sokolov, Intern. J. Astron., Astrophys. and Space Science 2 (6), 51 (2015).
V. V. Sokolov, Gravidynamics and quarks (URSS, Moscow, 2019), https://urss.ru/cgi-bin/db.pl?lang=en blang=ru page=Book id#8152.
V. V. Sokolov and S. V. Zharykov, Astrophys. and Space Sci. 201 (2), 303 (1993).
T. A. Thompson, C. S. Kochanek, K. Z. Stanek, et al., Science 366 (6465), 637 (2019).
S. E. Thorsett and D. Chakrabarty, Astrophys. J. 512 (1), 288 (1999).
V. Thorsson, M. Prakash, and J. M. Lattimer, Nuclear Physics A 572 (3–4), 693 (1994).
F. X. Timmes, S. E. Woosley, and T. A. Weaver, Astrophys. J. 457, 834 (1996).
R. C. Tolman, Phys. Rev. 55 (4), 364 (1939).
M. H. van Kerkwijk, J. van Paradijs, and E. J. Zuiderwijk, Astron. and Astrophys. 303, 497 (1995).
F. Weber, G. A. Contrera, M. G. Orsaria, et al., Modern Physics Letters A 29 (23), id. 1430022 (2014).
J. M. Weisberg, D. J. Nice, and J. H. Taylor, Astrophys. J. 722 (2), 1030 (2010).
R. B. Wiringa, V. Fiks, and A. Fabrocini, Phys. Rev. C 38 (2), 1010 (1988).
E. Witten, Phys. Rev. D 30 (2), 272 (1984).
\(\text{}\). Wyrzykowski and I. Mandel, Astron. and Astrophys. 636, id. A20 (2020).
K. Yagi and L. C. Stein, Classical and Quantum Gravity 33 (5), 054001 (2016).
Y. Yang, V. Gayathri, I. Bartos, et al., Astrophys. J. 901 (2), id. L34 (2020).
M. Zevin, M. Spera, C. P. L. Berry, and V. Kalogera, Astrophys. J. 899 (1), id. L1 (2020).
Funding
The work was performed as part of the government contract of the SAO RAS approved by the Ministry of Science and Higher Education of the Russian Federation. The authors are grateful to T.N. Sokolova for help in preparing the manuscript.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
The authors declare that there is no conflict of interest regarding the publication of this article.
Additional information
Translated by T. Sokolova
Rights and permissions
About this article
Cite this article
Kumar, N., Sokolov, V.V. Mass Distribution and “Mass Gap” of Compact Stellar Remnants in Binary Systems. Astrophys. Bull. 77, 197–213 (2022). https://doi.org/10.1134/S1990341322020043
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1990341322020043