Skip to main content
Log in

Fast radio bursts and axion miniclusters

  • Astrophysics and Cosmology
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Nonlinear effects in the evolution of the axion field in the early Universe may lead to the formation of gravitationally bound clumps of axions, known as “miniclusters.” Minicluster masses should be in the range M mc ∼ 10−12 M , and in plausible early-Universe scenarios a significant fraction of the mass density of the Universe may be in the form of axion miniclusters. Here, I argue that observed properties (total energy release, duration, high brightness temperature, event rate) of recently discovered Fast Radio Bursts can be matched in a model which assumes explosive decay of axion miniclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Lorimer, M. Bailes, M. A. McLaughlin, D. J. Narkevic, and F. Crawford, Science 318, 777 (2007); arXiv:0709.4301 [astro-ph].

    Article  ADS  Google Scholar 

  2. E. F. Keane, D. A. Ludovici, R. P. Eatough, M. Kramer, A. G. Lyne, M. A. McLaughlin, and B. W. Stappers, Mon. Not. R. Astron. Soc. 401, 1057 (2010); arXiv:0909.1924 [astro-ph.SR].

    Article  ADS  Google Scholar 

  3. D. Thornton, B. Stappers, M. Bailes, B. R. Barsdell, S. D. Bates, N. D. R. Bhat, M. Burgay, and S. BurkeSpolaor, Science 341, 6141 (2013); arXiv:1307.1628 [astro-ph.HE].

    Article  Google Scholar 

  4. L. G. Spitler, J. M. Cordes, J. W. T. Hessels, D. R. Lorimer, M. A. McLaughlin, S. Chatterjee, F. Crawford, J. S. Deneva, et al., Astrophys. J. 790, 101 (2014); arXiv:1404.2934 [astro-ph.HE].

    Article  ADS  Google Scholar 

  5. S. Burke-Spolaor and K. W. Bannister, Astrophys. J. 792, 19 (2014); arXiv:1407.0400 [astro-ph.HE].

    Article  ADS  Google Scholar 

  6. J. I. Katz, Phys. Rev. D 89, 103009 (2014); arXiv:1309.3538 [astro-ph.HE].

    Article  ADS  Google Scholar 

  7. J. Luan and P. Goldreich, Astrophys. J. 785, L26 (2014); arXiv:1401.1795 [astro-ph.HE].

    Article  ADS  Google Scholar 

  8. S. R. Kulkarni, E. O. Ofek, J. D. Neill, Z. Zheng, and M. Juric, arXiv:1402.4766 [astro-ph.HE].

  9. M. Pietka, R. P. Fender, and E. F. Keane, arXiv:1411.1067 [astro-ph.HE].

  10. S. B. Popov and K. A. Postnov, arXiv:0710.2006 [astroph]; arXiv:1307.4924 [astro-ph.HE].

  11. Y. Lyubarsky, arXiv:1401.6674 [astro-ph.HE].

  12. T. Vachaspati, Phys. Rev. Lett. 101, 141301 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  13. Y. F. Cai, E. Sabancilar, and T. Vachaspati, Phys. Rev. D 85, 023530 (2012); arXiv:1110.1631 [astro-ph.CO].

    Article  ADS  Google Scholar 

  14. Y. W. Yu, K. S. Cheng, G. Shiu, and H. Tye, arXiv:1409.5516 [astro-ph.HE].

  15. A. Iwazaki, arXiv:1410.4323 [hep-ph].

  16. A. Ringwald, L. J. Rosenberg, and G. Rybka, Rev. Part. Phys., Chin. Phys. C 38, 090001 (2014).

    Google Scholar 

  17. I. I. Tkachev, Sov. Astron. Lett. 12, 305 (1986).

    ADS  Google Scholar 

  18. T. W. Kephart and T. J. Weiler, Phys. Rev. D 52, 3226 (1995).

    Article  ADS  Google Scholar 

  19. A. Riotto and I. Tkachev, Phys. Lett. B 484, 177 (2000); astro-ph/0003388.

    Article  ADS  Google Scholar 

  20. E. W. Kolb and I. I. Tkachev, Phys. Rev. Lett. 71, 3051 (1993); hep-ph/9303313.

    Article  ADS  Google Scholar 

  21. E. W. Kolb and I. I. Tkachev, Phys. Rev. D 49, 5040 (1994); astro-ph/9311037.

    Article  ADS  Google Scholar 

  22. E. W. Kolb and I. I. Tkachev, Phys. Rev. D 50, 769 (1994); astro-ph/9403011.

    Article  ADS  Google Scholar 

  23. E. W. Kolb and I. I. Tkachev, Astrophys. J. 460, L25 (1996); astro-ph/9510043.

    ADS  Google Scholar 

  24. R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977).

    Article  ADS  Google Scholar 

  25. L. Kofman, A. D. Linde, and A. A. Starobinsky, Phys. Rev. Lett. 76, 1011 (1996); I. I. Tkachev, Phys. Lett. B 376, 35 (1996); hep-th/9510146.

    Article  ADS  Google Scholar 

  26. F. E. Schunck and E. W. Mielke, Class. Quantum Grav. 20, R301 (2003); arXiv:0801.0307 [astro-ph].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. I. I. Tkachev, Phys. Lett. B 261, 289 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  28. D. V. Semikoz and I. I. Tkachev, Phys. Rev. Lett. 74, 3093 (1995); Phys. Rev. D 55, 489 (1997).

    Article  ADS  Google Scholar 

  29. S. Khlebnikov and I. Tkachev, Phys. Rev. D 61, 083517 (2000); hep-ph/9902272.

    Article  ADS  Google Scholar 

  30. P. Sikivie and Q. Yang, Phys. Rev. Lett. 103, 111301 (2009); arXiv:0901.1106 [hep-ph].

    Article  ADS  Google Scholar 

  31. arXiv:0901.0555 [astro-ph.CO].

  32. L. Kofman, A. D. Linde, and A. A. Starobinsky, Phys. Rev. Lett. 73, 3195 (1994); S. Y. Khlebnikov and I. I. Tkachev, Phys. Rev. Lett. 79, 1607 (1997).

    Article  ADS  Google Scholar 

  33. M. C. Huang and P. Sikivie, Phys. Rev. D 32, 1560 (1985).

    Article  ADS  Google Scholar 

  34. P. Sikivie (ADMX Collab.), Phys. Rev. Lett. 51, 1415 (1983); Phys. Rev. Lett. 52, 695(E) (1984)].

    Article  ADS  Google Scholar 

  35. M. S. Pshirkov and S. B. Popov, J. Exp. Theor. Phys. 108, 384 (2009); arXiv:0711.1264 [astro-ph].

    Article  ADS  Google Scholar 

  36. S. Y. Khlebnikov and I. I. Tkachev, Phys. Rev. Lett. 77, 219 (1996); hep-ph/9603378.

    Article  ADS  Google Scholar 

  37. R. Micha and I. I. Tkachev, Phys. Rev. Lett. 90, 121301 (2003); Phys. Rev. D 70, 043538 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Tkachev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkachev, I.I. Fast radio bursts and axion miniclusters. Jetp Lett. 101, 1–6 (2015). https://doi.org/10.1134/S0021364015010154

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364015010154

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy