Abstract
The shapes of asteroids reflect interplay between their interior properties and the processes responsible for their formation and evolution as they journey through the Solar System. Prior to the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer) mission, Earth-based radar imaging gave an overview of (101955) Bennu’s shape. Here we construct a high-resolution shape model from OSIRIS-REx images. We find that Bennu’s top-like shape, considerable macroporosity and prominent surface boulders suggest that it is a rubble pile. High-standing, north–south ridges that extend from pole to pole, many long grooves and surface mass wasting indicate some low levels of internal friction and/or cohesion. Our shape model indicates that, similar to other top-shaped asteroids, Bennu formed by reaccumulation and underwent past periods of fast spin, which led to its current shape. Today, Bennu might follow a different evolutionary pathway, with an interior stiffness that permits surface cracking and mass wasting.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Code availability
Most of the image and digital terrain analyses shown were undertaken with the JHUAPL Small Body Mapping Tool (SBMT). It is available for the analysis of a broad suite of asteroid and comet data at sbmt.jhuapl.edu. On release of the OSIRIS-REx data by the PDS, a version of SBMT with those data will be made publicly available. The spherical harmonic assessment was performed using the Spherical Harmonic Transform Library hosted at Mathworks (https://www.mathworks.com/matlabcentral/fileexchange/43856-real-complex-spherical-harmonic-transform-gaunt-coefficients-and-rotations). The SPC code used to develop the GDTM of Bennu can be made available with special permission. Please contact the corresponding author for additional information on how.
Data availability
Raw through to calibrated data sets will be available via the Planetary Data System (PDS) (https://sbn.psi.edu/pds/resource/orex/). Data are delivered to the PDS according to the OSIRIS-REx Data Management Plan available in the OSIRIS-REx PDS archive. Higher-level products (for example, the GDTM) discussed here will be available in the PDS one year after departure from the asteroid.
Change history
02 September 2020
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
References
Nolan, M. et al. Shape model and surface properties of the OSIRIS-REx target asteroid (101955) Bennu from radar and lightcurve observations. Icarus 226, 629–640 (2013).
Hergenrother, C. W. et al. Lightcurve, color and phase function photometry of the OSIRIS-REx target asteroid (101955) Bennu. Icarus 226, 663–670 (2013).
Rizk, B. et al. OCAMS: the OSIRIS-REx Camera Suite. Space Sci. Rev. 214, 26 (2018).
Gaskell, R. W. et al. Characterizing and navigating small bodies with imaging data. Meteorit. Planet. Sci. 43, 1049–1061 (2008).
Daly, M. G. et al. The OSIRIS-REx Laser Altimeter (OLA) investigation and instrument. Space Sci. Rev. 198, 1–26 (2017).
Hergenrother, C. W. et al. Operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations. Nat. Commun. https://doi.org/10.1038/s41467-019-09213-x (2019).
Lauretta, D. S. et al. The unexpected surface of asteroid (101955) Bennu. Nature https://doi.org/10.1038/s41586-019-1033-6 (2019).
Abe, S. et al. Mass and local topography measurements of Itokawa by Hayabusa. Science 312, 1344–1347 (2006).
Watanabe, S. et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu — a spinning-top-shaped rubble pile. Science https://doi.org/10.1126/science.aav8032 (in the press).
Scheeres, D. J. et al. The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements. Nat. Astron. https://doi.org/10.1038/s41550-019-0721-3 (2019).
Hamilton, V. E. et al. Evidence for widespread hydrated minerals on asteroid (101955) Bennu. Nat. Astron. https://doi.org/10.1038/s41550-019-0722-2 (2019).
Macke, R. J., Consolmagno, G. J. & Britt, D. T. Density, porosity, and magnetic susceptibility of carbonaceous chondrites. Meteorit. Planet. Sci. 46, 1842–1862 (2011).
Scheeres, D. J., Britt, D., Carry, D. & Holsapple, K. A. in Asteroids IV (eds Michel, P., DeMeo, F. E. & Bottke, W. F.) 745–766 (University of Arizona Press, Tucson, 2015).
Walsh, K. J. et al. Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface. Nat. Geosci. https://doi.org/10.1038/s41561-019-0326-6 (2019).
Cheng, A. F. et al. Small-scale topography of 433 Eros from laser altimetry and imaging. Icarus 155, 51–74 (2002).
Barnouin-Jha, O. S. et al. Small-scale topography of 25143 Itokawa from the Hayabusa laser altimeter. Icarus 198, 108–124 (2008).
Scheeres, D. J. et al. The geophysical environment of Bennu. Icarus 276, 116–140 (2016).
Mazrouei, S., Daly, M. G., Barnouin, O. S., Ernst, C. M. & DeSouza, I. Block distributions on Itokawa. Icarus 229, 181–189 (2014).
Marchi, S., Chapman, C. R., Barnouin, O. S., Richardson, J. E., Vincent, J.-B. in Asteroids IV (eds Michel, P., DeMeo, F. E. & Bottke, W. F.) 725–744 (University of Arizona Press, Tucson, 2015).
Thomas, P. C. et al. Mathilde: size, shape, and geology. Icarus 140, 17–27 (1999).
Hirata, N. et al. A survey of possible impact structures on 25143 Itokawa. Icarus 200, 486–502 (2009).
Bart, G. D. & Melosh, H. J. Using lunar boulders to distinguish primary from distant secondary impact craters. Geophys. Res. Lett. 34, L07203 (2007).
Michel, P. & Richardson, D. C. Collision and gravitational reaccumulation: possible formation mechanism of the asteroid Itokawa. Astron. Astrophys. 554, 1–4 (2013).
Holsapple, K. A. Equilibrium figures of spinning bodies with self-gravity. Icarus 172, 272–303 (2004).
Iverson, R. M. The physics of debris flows. Rev. Geophys. 35, 245–296 (1997).
Prockter, L. et al. Surface expressions of structural features on Eros. Icarus 155, 75–93 (2002).
Walsh, K. J., Richardson, D. C. & Michel, P. Rotational breakup as the origin of small binary asteroids. Nature 454, 188–191 (2008).
Hirabayashi, M., Sanchez, P. & Scheeres, D. J. Internal structure of asteroids having surface shedding due to rotational instability. Astrophys. J. 808, 63 (2015).
Zhang, Y. et al. Creep stability of the proposed AIDA mission target 65803 Didymos: I. Discrete cohesionless granular physics model. Icarus 294, 98–123 (2017).
Barnouin, O. S., Michel, P. & Richardson, D. C. A preliminary assessment of asteroid shapes produced by impact disruption and re-creation: application to the AIDA target. Geophys. Res. Abstracts 18, 17584 (2016).
Michel, P. et al. Disruption and reaccumulation as the possible origins of Ryugu and Bennu top shapes. In Lunar Planetary Sci. Conf. 50 abstr. 1659 (2019).
Rubincam, D. P. Radiative spin-up and spin-down of small asteroids. Icarus 148, 2–11 (2000).
Hirabayashi, M. & Scheeres, D. J. Stress and failure analysis of rapidly rotating asteroid (29075) 1950 DA. Astrophys J. Lett. 798, L8 (2014).
Sanchez, P. & Scheeres, D. J. Disruption patterns of rotating self-gravitating aggregates: a survey on angle of friction and tensile strength. Icarus 271, 453–471 (2016).
Zhang, Y. et al. Rotational failure of rubble-pile bodies: influences of shear and cohesive strengths. Astrophys. J. 857, 15 (2018).
Miyamoto, H. et al. Regolith migration and sorting on asteroid Itokawa. Science 316, 1011 (2007).
Delbo, M. et al. Thermal fatigue as the origin of regolith on small asteroids. Nature 508, 233–236 (2014).
Barnouin, O. S. et al. Altimetry efforts at Bennu. In Lunar Planetary Sci. Conf. 49 abstr. 1041 (2018).
Gaskell, R. W. Gaskell Eros Shape Model V1.0. NEAR-A-MSI-5-EROSSHAPE-V1.0. NASA Planetary Data System (NASA, 2008).
Gaskell, R. W. et al. Itokawa Shape Model V1.0. HAY-A-AMICA-5-ITOKAWASHAPE-V1.0. NASA Planetary Data System (NASA, 2008).
DellaGiustina, D. N. et al. Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis. Nat. Astron. https://doi.org/10.1038/s41550-019-0731-1 (2019).
Richardson, J. E. & Bowling, T. J. Investigating the combined effects of shape, density, and rotation on small body surface slopes and erosion rates. Icarus 234, 53–65 (2014).
Acknowledgements
This material is based on work supported by NASA under contract NNM10AA11C issued through the New Frontiers Program. The Canadian team members were supported by the Canadian Space Agency. P.M. acknowledges funding support from the French space agency CNES and from Academies of Excellence: Complex systems and Space, environment, risk, and resilience, part of the IDEX JEDI of the Université Côte d’Azur.
Author information
Authors and Affiliations
Consortia
Contributions
O.S.B. is the OSIRIS-REx Altimetry Working Group (AltWG) lead responsible for the generation of all the global and local digital terrain models produced during the OSIRIS-REx Mission. He worked with M.G.D., the instrument Principle Investigator for OLA, as well as E.E.P., R.W.G. and J.R.W., who developed and tested the SPC software, and subsequently made the GDTM. C.L.J. and M.M.A. undertook verification of the SPC GDTM and assessed the circularity of Bennu’s circumference, and J.H.R. and G.A.N. performed the spherical harmonic and Maclaurin assessment of the shape. M.E.P., as the AltWG system engineer, facilitated verification of the GDTM products and contributed to lineament assessments. H.C.M.S. provided roughness assessments of Bennu. R.T.D. measured crater shapes under the guidance of E.E.B. R.T.D. also performed the hypsometry analysis. J.A.S. is the OLA instrument scientist and helped to verify the SPC products. R.M.E., A.H.N., L.N. and C.M.E. helped to generate the final topographic products (for example, elevation, slope and radius) used in the analyses presented. C.M.E. also aided R.T.D. in the crater analysis. W.V.B. and M.C.N. oversaw the collection of the data necessary to make the presented GDTM. C.D.A., M.C.M. and E.M.M. are part of the OSIRIS-REx flight dynamics team who worked closely with the AltWG and provided an independent verification of the SPC model presented. B.R. and C.D.D. are the lead engineers for OCAMS, without which the SPC shape models would not be possible. E.R.J., K.J.W., P.M., S.R.S., R.-L.B. and E.M.M. are members of the OSIRIS-REx Regolith Working Group who either mapped, modelled, or undertook analyses that are part of the presented manuscript. D.J.S. and J.M. worked with the OSIRIS-REx flight dynamics team to generate the asteroid mass needed for the porosity discussion and provided some of the shape inferences from their modelling efforts. S.S., N.H. and S.W. are Hayabusa2 team members who provided access to Ryugu data that was used to motivate some of the discussion presented in this study. K.N.B., D.N.D. and C.A.B. provided the boulder distribution used to demonstrate the influence of the longitudinal ridges on boulder locations. D.S.L. is the OSIRIS-REx Principal Investigator. O.S.B., M.G.D., C.L.J. and M.E.P. drafted the manuscript, which was reviewed by all the authors. The entire OSIRIS-REx Team made the Bennu encounter possible.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary information
Supplementary Figs 1–6
Rights and permissions
About this article
Cite this article
Barnouin, O.S., Daly, M.G., Palmer, E.E. et al. Shape of (101955) Bennu indicative of a rubble pile with internal stiffness. Nat. Geosci. 12, 247–252 (2019). https://doi.org/10.1038/s41561-019-0330-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41561-019-0330-x
This article is cited by
-
Numerical simulations suggest asteroids (101955) Bennu and (162173) Ryugu are likely second or later generation rubble piles
Nature Communications (2024)
-
Seismic resurfacing of 433 Eros indicative of a highly dissipative interior for large near-Earth asteroids
Nature Astronomy (2024)
-
Forced periodic motion by solar radiation pressure in the polyhedral gravity model
Celestial Mechanics and Dynamical Astronomy (2024)
-
Mechanical properties of rubble pile asteroids (Dimorphos, Itokawa, Ryugu, and Bennu) through surface boulder morphological analysis
Nature Communications (2024)
-
A contact binary satellite of the asteroid (152830) Dinkinesh
Nature (2024)