Abstract
Some of the outstanding cognitive capabilities of humans are commonly attributed to a disproportionate enlargement of the human frontal lobe during evolution. This claim is based primarily on comparisons between the brains of humans and of other primates, to the exclusion of most great apes. We compared the relative size of the frontal cortices in living specimens of several primate species, including all extant hominoids, using magnetic resonance imaging. Human frontal cortices were not disproportionately large in comparison to those of the great apes. We suggest that the special cognitive abilities attributed to a frontal advantage may be due to differences in individual cortical areas and to a richer interconnectivity, none of which required an increase in the overall relative size of the frontal lobe during hominid evolution.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Goldman-Rakic, P. S. The frontal lobes: uncharted provinces of the brain. Trends Neurosci. 7, 425–429 (1984).
Barbas, H. & Pandya, D. N. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 286, 353–375 (1989).
Fuster, J. M. The Prefrontal Cortex. Anatomy, Physiology, and Neuropsychology of the Frontal Lobe (Lippincott-Raven, Philadelphia, 1997).
Holloway, R. L. The evolution of the primate brain: some aspects of quantitative relations. Brain Res. 7, 121–172 (1968).
Jerison, H. J. in Development of the Prefrontal Cortex: Evolution, Neurobiology, and Behavior (eds. Krasnegor, N. A., Lyon, R. & Goldman-Rakic, P. S.) 9–26 (Brooks, Baltimore, 1997).
Deacon, T. W. The Symbolic Species (Norton, New York, 1997).
Brodmann, K. Neue Ergebnisse über die vergleichende histologische Lokalisation der Grosshirnrinde mit besonderer Berücksichtigung des Stirnhirns. Anat. Anzeiger 41, 157–216 (1912).
Blinkov, S. M. & Glezer, I. I. Das Zentralnervensystem in Zahlen und Tabellen (Fischer, Jena, 1968).
Uylings, H. B. M. & Van Eden, C. G. in Progress in Brain Research vol. 85 (eds. Uylings, H. B. M., Van Eden, C. G., De Bruin, J. P. C., Corner, M. A. & Feenstra, M. G. P.) 31–62 (Elsevier, New York, 1990).
Zilles, K., Armstrong, E., Schleicher, A. & Kretschmann, H. The human pattern of gyrification in the cerebral cortex. Anat. Embryol. 179, 173–179 (1988).
McBride, T., Arnold, S. E. & Gur, R. C. A comparative volumetric analysis of the prefrontal cortex in human and baboon MRI. Brain Behav. Evol. 54, 159–166 (1999).
Semendeferi, K., Damasio, H., Frank, R. J. & Van Hoesen, G. W. The evolution of the frontal lobes: a volumetric analysis based on three-dimensional reconstructions of magnetic resonance scans of human and ape brains. J. Hum. Evol. 32, 375–388 (1997).
Semendeferi, K. & Damasio, H. The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. J. Hum. Evol. 38, 317–332 (2000).
Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K. & Van Hoesen, G. W. Prefrontal cortex in humans and apes: a comparative study of area 10. Am. J. Phys. Anthropol. 114, 224–241 (2001).
Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K. & Van Hoesen, G. W. Limbic frontal cortex in hominoids: a comparative study of area 13. Am. J. Phys. Anthropol. 106, 129–155 (1998).
Damasio, A. R. Descartes' Error (Grosset/Putnam, New York, 1994).
Buxhoeveden, D. P., Switala, A. E., Roy, E., Litaker, M. & Casanova, M. F. Morphological differences between minicolumns in human and nonhuman primate cortex. Am. J. Phys. Anthropol. 115, 361–371 (2001).
Preuss, T. M., Qi, H. & Kaas, J. H. Distinctive compartmental organization of human primary visual cortex. Proc. Natl. Acad. Sci. USA 96, 11601–11606 (1999).
Zhang, K. & Sejnowski, T. J. A universal scaling law between gray matter and white matter of cerebral cortex. Proc. Natl. Acad. Sci. USA 97, 5621–5626 (2000).
de Winter, W. & Oxnard, C. E. Evolutionary radiations and convergences in the structural organization of mammalian brains. Nature 409, 710–714 (2001).
Finlay, B. L. & Darlington, R. B. Linked regularities in the development and evolution of mammalian brains. Science 268, 1578–1583 (1995).
Clark, D. A., Mitra, P. P. & Wang, S. S.-H. Scalable architecture in mammalian brains. Nature 411, 189–193 (2001).
Nimchinsky, E. A. et al. A neuronal morphologic type unique to humans and great apes. Proc. Natl. Acad. Sci. USA 96, 5268–5273 (1999).
Radinsky, L. The fossil evidence of anthropoid brain evolution. Am. J. Phys. Anthropol. 41, 15–28 (1974).
Damasio, H. & Frank, R. J. Three dimensional in vivo mapping of brain lesions in humans. Arch. Neurol. 49, 137–143 (1992).
Frank, R. J., Damasio, H. & Grabowski, T. J. Brainvox: an interactive, multimodal, visualization and analysis system for neuroanatomical imaging. Neuroimage 5, 13–30 (1997).
Roland, P. E. & Zilles, K. Brain atlases—a new research tool. Trends Neurosci. 17, 458–467 (1994).
Smith, R. J. Current events: regression models for prediction equations. J. Hum. Evol. 26, 239–244 (1994).
Aiello, L. C. Allometry and the analysis of size and shape in human evolution. J. Hum. Evol. 22, 127–147 (1992).
Acknowledgements
We thank T. Wolfson and D. Politis for statistical consulting and J. Spradling and N. Xenitopoulos for technical and graphic support.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Semendeferi, K., Lu, A., Schenker, N. et al. Humans and great apes share a large frontal cortex. Nat Neurosci 5, 272–276 (2002). https://doi.org/10.1038/nn814
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nn814