Abstract
RECENT observations suggest that the eruption of Mount Pinatubo in June 1991 has had a considerable effect on ozone concentrations in the tropical stratosphere (refs 1, 2, and J. W. Waters, personal communication). Although stratospheric ozone losses following volcanic eruptions are generally attributed to the presence of sulphate aerosol3–7, we present model calculations which demonstrate that gas-phase sulphur chemistry may have played a part in the tropical ozone perturbations that followed the Pinatubo eruption. We find that in the first month or so after the eruption, the large amount of SO2 injected into the tropical atmosphere catalyses mid-stratospheric ozone production. On the other hand, the SO2 cloud absorbs solar radiation, thereby reducing the rate of O2 photolysis (and hence of ozone production) below it. These two effects cancel each other out at an altitude of about 25 kilometres. After one or two months, most of the SO2 has been oxidized to sulphate; the efficiency of these two mechanisms then becomes negligible (although ozone remains perturbed in the lower stratosphere because of its long photochemical lifetime in this region). The model features show good agreement with initial ozone measurements following the eruption, including both the mid-altitude switch from ozone loss to ozone gain1, and the increase and subsequent decrease in the total ozone column2,7.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Grant, W. B. et al Geophys. Res. Lett. 19, 1109–1112 (1992).
Schoeberl, M. R., Bhartia, P. K., Hilsenrath, E. & Torres, O. Geophys. Res. Lett. 20, 29–32 (1993).
Hofmann, D. J. & Solomon, S. J. geophys. Res. 94, 5029–5041 (1989).
Prather, M. J. J. geophys. Res 97, 10187–10191 (1992).
Michelangeli, D. V., Allen, M. & Yung, Y. L. J. geophys. Res. 94, 18429–18443 (1989).
Brasseur, G. P. & Granier, C. Science 257, 1239–1242 (1992).
Kinne, S., Toon, O. B. & Prather, M. J. Geophys. Res. Lett. 19, 1927–1930 (1992).
Chandra, S. Geophys. Res. Lett 20, 33–36 (1993).
Bluth, G. J. S., Doiron, S. D., Schnetzler, C. C., Krueger, A. J. & Walter, L. S. Geophys. Res. Lett. 9, 151–154 (1992).
McCormick, M. P. & Veiga, R. E. Geophys. Res. Lett. 9, 155–158 (1992).
Stockwell, W. R. & Calvert, J. G. Atmos. Envir. 17, 2231–2235 (1983).
McKeen, S. A., Liu, S. C. & Kiang, C. S. J. geophys. Res. 89, 4873–4881 (1984).
Crutzen, P. J. & Schmailzl, U. Planet. Space Sci. 31, 1009–1032 (1983).
Okabe, H. Photochemistry of Small Molecules (Wiley-lnterscience, New York, 1978).
Harwood, R. S. & Pyle, J. A. Q. Jl R. met. Soc. 101, 723–748 (1975).
Haigh, J. D. & Pyle, J. A. Q. Jl R. met. Soc. 108, 551–574 (1982).
Bekki, S. & Pyle, J. A. J. geophys. Res. 97, 15839–15847 (1992).
DeMore, W. B. et al. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling Evaluation 9, 90–1 (NASA/JPL Publ. 1990).
Yung, Y. L. & DeMore, W. B. Icarus 51, 199–247 (1982).
Bernard, A., Demaiffe, D., Matielli, N., Runong-bayan, R. S. Nature 354, 139–140 (1991).
Trepte, C. R. & Hitchman, M. H. Nature 355, 626–628 (1992).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bekki, S., Toumi, R. & Pyle, J. Role of sulphur photochemistry in tropical ozone changes after the eruption of Mount Pinatubo. Nature 362, 331–333 (1993). https://doi.org/10.1038/362331a0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/362331a0