Abstract
This paper pursues the idea of a general multiobjective optimizer that can be flexibly adapted to arbitrary user preferences—assuming that the goal is to approximate the Pareto-optimal set. It proposes the Set Preference Algorithm for Multiobjective Optimization (SPAM) the working principle of which is based on two observations: (i) current multiobjective evolutionary algorithms (MOEAs) can be regarded as hill climbers on set problems and (ii) specific user preferences are often (implicitly) expressed in terms of a binary relation on Pareto set approximations. SPAM realizes a (1 + 1)-strategy on the space of Pareto set approximations and can be used with any type of set preference relations, i.e., binary relations that define a total preorder on Pareto set approximations. The experimental results demonstrate for a range of set preference relations that SPAM provides full flexibility with respect to user preferences and is effective in optimizing according to the specified preferences. It thereby offers a new perspective on preference-guided multiobjective search.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester (2001)
Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN VIII 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)
Fonseca, C.M., Fleming, P.J.: Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms—Part I: A Unified Formulation. IEEE Transactions on Systems, Man, and Cybernetics 28(1), 26–37 (1998)
Branke, J., Kaußler, T., Schmeck, H.: Guidance in Evolutionary Multi-Objective Optimization. Advances in Engineering Software 32, 499–507 (2001)
Cvetković, D., Parmee, I.C.: Preferences and their Application in Evolutionary Multiobjective Optimisation. IEEE Transactions on Evolutionary Computation 6(1), 42–57 (2002)
Branke, J., Deb, K.: Integrating User Preferences into Evolutionary Multi-Objective Optimization. Technical Report 2004004, Indian Institute of Technology, Kanpur, India (2004); In: Jin, Y. (ed). Knowledge Incorporation in Evolutionary Computation, pp. 461–477. Springer, Heidelberg (2004)
Deb, K., Sundar, J.: Reference Point Based Multi-Objective Optimization Using Evolutionary Algorithms. In: Keijzer, M., et al. (eds.) Conference on Genetic and Evolutionary Computation (GECCO 2006), pp. 635–642. ACM Press, New York (2006)
Rachmawati, L., Srinivasan, D.: Preference Incorporation in Multi-objective Evolutionary Algorithms: A Survey. In: IEEE Congress on Evolutionary Computation (CEC 2006), Vancouver, BC, Canada, pp. 3385–3391. IEEE Press, Los Alamitos (2006)
Mehnen, J., Trautmann, H., Tiwari, A.: Introducing User Preference Using Desirability Functions in Multi-Objective Evolutionary Optimisation of Noisy Processes. In: IEEE Congress on Evolutionary Computation (CEC 2007), pp. 2687–2694. IEEE Press, Los Alamitos (2007)
Emmerich, M., Beume, N., Naujoks, B.: An EMO Algorithm Using the Hypervolume Measure as Selection Criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)
Igel, C., Hansen, N., Roth, S.: Covariance Matrix Adaptation for Multi-objective Optimization. Evolutionary Computation 15(1), 1–28 (2007)
Zitzler, E., Brockhoff, D., Thiele, L.: The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration. In: Obayashi, S., et al. (eds.) EMO 2007. LNCS, vol. 4403, pp. 862–876. Springer, Heidelberg (2007)
Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)
Knowles, J., Corne, D.: On Metrics for Comparing Non-Dominated Sets. In: Congress on Evolutionary Computation (CEC 2002), pp. 711–716. IEEE Computer Society Press, Piscataway (2002)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)
Zitzler, E., Thiele, L., Bader, J.: On Set-Based Multiobjective Optimization. Technical Report 300, Computer Engineering and Networks Laboratory, ETH Zurich (2008)
Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations of the non-dominated set. Technical report, Institute of Mathematical Modeling, Technical University of Denmark, IMM Technical Report IMM-REP-1998-7 (1998)
Veldhuizen, D.A.V., Lamont, G.B.: Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art. Evolutionary Computation 8(2), 125–147 (2000)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In: Giannakoglou, K., et al. (eds.) Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), International Center for Numerical Methods in Engineering (CIMNE), pp. 95–100 (2002)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)
Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation 2(3), 221–248 (1994)
Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler, E.: Do Additional Objectives Make a Problem Harder? In: Thierens, D., et al. (eds.) Genetic and Evolutionary Computation Conference (GECCO 2007), pp. 765–772. ACM Press, New York (2007)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Schoenauer, M., et al. (eds.) PPSN VI 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Multi-Objective Optimization Test Problems. In: Congress on Evolutionary Computation (CEC 2002), pp. 825–830. IEEE Press, Los Alamitos (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zitzler, E., Thiele, L., Bader, J. (2008). SPAM: Set Preference Algorithm for Multiobjective Optimization. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds) Parallel Problem Solving from Nature – PPSN X. PPSN 2008. Lecture Notes in Computer Science, vol 5199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87700-4_84
Download citation
DOI: https://doi.org/10.1007/978-3-540-87700-4_84
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87699-1
Online ISBN: 978-3-540-87700-4
eBook Packages: Computer ScienceComputer Science (R0)