Conclusion
We have argued that time geography provides a perspective that helps unify the two paradigms of (a) multi-agent systems, as developed within computer science, and (b) microsimulations, as developed within the social sciences. By identifying and defining these two paradigms, and by reasoning about the central concepts of each of them, we have taken a first step in amalgamating them. We have attempted to take a general systems approach in order to avoid myopia and jargon limitations, and hopefully avoid being too narrow in scope (an approach different from, e. g., Gimblett, 2002).
Our claim is that developments based on a synthesis of the three paradigms offer a rich potential for substantial advance of systems analysis methodology. It gives a new angle to classical problems like how to achieve consistency with the world outside a defined core system boundary, how to simultaneously represent processes on very different spatial and temporal scales, how to enable agents to concurrently obey internal and external rules, and how to integrate observable and postulated behavior while preserving achievability of endogenous emergence.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agre, P. & Chapman, D. (1987). pengi-An Implementation of aTheory of Activity. In Proc AAAI (pp. 268–272). San Mateo, Calif.: Morgan Kaufmann.
Antcliff, S. (1993). An Introduction to DYNAMOD-A Dynamic Population Microsimulation Model. Canberra, Australia: National Centre for Social and Economic Modelling.
Axelrod, R. (1997a). Advancing the Art of Simulation in the Social Sciences. In R. Conte, R. Hegselmann, & P. Terno (Eds.), Simulating Social Phenomena (pp. 21–40). Berlin: Springer Verlag.
Axelrod, R. (1997b). The Complexity of Cooperation, Princeton, N.J.: Princeton University Press.
Axtell, R. (2000). Why Agents? On the Varied Motivations for Agent Computing in the Social Sciences, Working Paper 17. Center on Social and Economic Dynamics, Brookings Institution.
Axtell, R., Axelrod, R., Epstein, J., & Cohen, M. (1996). Aligning Simulation Models: A Case Study and Results. Computational and Mathematical Organization Theory, 1, 123–141.
Bertels, K. & Boman, M. (2001). Agent-Based Social Simulation in Markets. Electronic Commerce Research, 1(1–2), 149–158.
Boman, M. (1999). Norms in Artificial Decision Making. Artificial Intelligence and Law, 7, 17–35.
Boman, M. (2001). Trading Agents. AgentLink News, 6, 15–17.
Boman, M., Bubenko jr., J., & Johannesson, P. (1997). Conceptual Modelling. London: Prentice-Hall.
Bond, A.H. & Gasser, L. (Eds.) (1988). Readings in Distributed Artificial Intelligence. San Mateo, Calif.: Morgan Kaufmann.
Bratman, M.E. (1987). Intention, Plans, and Practical Reason. Cambridge, Mass., London: Harvard University Press.
Brooks, R.A. (1986). A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics and Automation, 2(1), 14–23.
Brooks, R.A. (1990). Elephants don’t play chess. In P. Maes (Ed.), Designing Autonomous Agents, Theory and Practice from Biology to Engineering and Back (pp. 3–15). Cambridge: The MIT Press.
Caldwell, S. & Keister, L.A. (1996). Wealth in America: family stock ownership and accumulation 1960–95. In G.P. Clarke (1996).
Carpenter, J. (2002). Evolutionary Models of Bargaining: Comparing Agent-based Computational and Analytical Approaches to Understanding Convention Evolution. Computational Economics 19(1), 25–49.
Castelfranchi, C. (1998). Modelling Social Action for ai Agents. Artificial Intelligence, 103(1–2), 157–182.
Clarke, G.P. (Ed.) (1996). Microsimulation for Urban and Regional Policy Analysis. European Research in Regional Science, 6, 88–116.
Clarke, M. & Wilson, A.G. (1986). A framework for dynamic comprehensive urban models: the integration of accounting and Microsimulation approaches. Sistemi Urbani, 213, 145–177.
Clarke, M. & Holm, E. (1987). Micro-simulation methods in human geography and planning: a review and further extensions. Geografiska Annaler, 69B, 145–164.
Dean, T. & Boddy, M. (1988). An Analysis of Time-Dependent Planning. In Proc AAAI (pp. 49–54). St. Paul MN.
Dennett, D.C. (1978). Brainstorms-Philosophical Essays on Mind and Psychology. Cambridge, Mass.: The MIT Press.
Durlauf, S.N. (1999). How can Statistical Mechanics Contribute to Social Science? Proc Natl Acad Sci USA, 96, 10582–10584.
Epstein, J.M. & Axtell, R. (1996). Growing Artificial Societies-Social Science From theBottom Up. Washington DC: The Brookings Institution.
Fagin, R., Halpern, J.V., Moses, Y., & Vardi, M.Y. (1995). Reasoning About Knowledge. Cambridge, Mass.: The MIT Press.
Genesereth, M. & Ketchpel, S. (1994). Software Agents. Communications of the ACM, 37(7), 48–53.
Georgeff, M.P. & Lansky, A.L. (1987). Reactive Reasoning and Planning. In Proc AAAI’87 (pp. 677–682). Seattle WA.
Giddens, A. (1984). The Constitution of Society-Outline of the Theory of Structuration. Berkeley: University of California Press.
Gilbert, N. & Troitzsch, K.G. (1999). Simulation for the Social Scientist. Buckingham: Open University Press.
Gimblett, H.R. (Ed.) (2002). Integrating Geographic Information Systems and Agent-Based Modeling Techniques for Simulating Social and Ecological Processes. New York, Oxford: Oxford University Press.
Habermas, J. (1981). Theorie des Kommunikativen Handels. Frankfurt AM Main: Suhrkamp Verlag.
Hägerstrand, T. (1953). Innovationsförloppet ur kronologisk synpunkt. Meddelanden från Lunds universitets geografiska institution, avhandlingar XXV. Lund University.
Hägerstrand, T. (1975a). Space, time and human condition. In A. Karlqvist, L. Lundqvist, & F. Snickars (Eds.), Dynamic Allocation of Urban Space (pp. 2–12). Farnborough: Saxon House.
Hägerstrand, T. (1975b). Survival and arena: on the life-history of individuals in relation to their geographical environment. Monadnock, 49, 9–29.
Hägerstrand, T. (1995). Action in the physical everyday world. In A.D. Cliff, P. Gould, A. Hoare, & N. Thrift (Eds.), Diffusing Geography: Essays for Peter Haggett, Blackwell.
Holm, E. & Sander, L. (2001). Modèles spatiaux de microsimulation. In L. Sander (Ed.), Modèles en analyse spatiale. Lavoisier.
Holm, E., Mäkilä, K., & Öberg, S. (1989). Tidsgeografisk handlingsteori-Att bilda betingade biografier. GERUM Rapport No. 8. Umeå: University of Umeå.
Holm, E., Lindgren, U., & Malmberg, G. (2000). Dynamic Microsimulation. In A.S. Fotheringham & M. Wegener (Eds.), Spatial Models and GIS: New Potential and New Models (pp. 143–165). GISDATA Series 7. London: Taylor & Francis.
Huberman, B.A. & Glance, N.S. (1993). Evolutionary Games and Computer Simulations. Proc Natl Acad Sci USA, 90, 7716–7718.
Kaelbling, L. & Rosenschein, S.J. (1990). Action and Planning in Embedded Agents. In P. Maes (Ed.), Designing Autonomous Agents: Theory and Practice from Biology to Engineering and Back (pp. 35–48). Cambridge, Mass.: The MIT Press.
Krupp, H.-J. (1986). Potential and limitations of Microsimulation models. In G.H. Orcutt, J. Mertz, & H. Quinke (Eds.), Microanalytic Simulation Models to Support Social and Financial Study. Amsterdam, New York: North-Holland.
Langton, C. (1986). Studying Artificial Life with Cellular Automata. In D. Farmer, A. Lapedes, N. Packard, & B. Wendroff (Eds.), Evolution, Games and Learning (pp. 120–149). Amsterdam: North-Holland.
LeBaron, B. (2000). Agent Based Computational Finance-Suggested Readings and Early Research. Economic Dynamics and Control, 24(5–7), 679–702.
Leontief, W.W. (1951). The Structure of the American Economy, 1919–1939: an Empirical Application of Equilibrium Analysis. New York: Oxford University Press.
Lesser, V. (Ed.) (1995). Proc First Intl Conf on Multi-Agent Systems. San Mateo, Calif.: Morgan Kaufmann.
Maes, P. (1991). The Agent Network Architecture (ANA), SIGART Bulletin, 2(4), 115–120.
Mas-Colell, A., Whinston, M.D., & Green, J.R. (1995). Microeconomic Theory. New York: Oxford University Press.
Merz, J. (1991). Microsimulation-a survey of principles, developments and applications. International Journal of Forecasting, 7, 77–104.
Möhring, M. & Troitzsch, K.G. (2001). Lake Anderson Revisited by Agents. Artificial Societies and Social Simulation, 4(3). Retrieved on February 3, 2002, from http://www.soc.surrey.ac.uk/JASSS/4/3/1.html.
Nakamura, A., Nakamura, M., & Orcutt, G.H. (1976). Testing for relationship between timeseries. Journal of the American Statistical Association, 71, 214–222.
Newell, A. & Simon, H.A. (1961). GPS, a Program that Simulates Human Thought. In R. Billing (Ed.), Lernende Automaten (pp. 109–124). Oldenbourg.
O’Donoghue, C. (2001). Dynamic Microsim ulation-A Methodological Survey. Brazilian Electronic Journal of Economics, 4(2), December. Retrieved on February 3, 2002, from http://www.beje.decon.ufpe.br/v4n2/v4n2.htm.
O’Sullivan, D. & Haklay, M. (2000). Agent-Based Models and Individualism-Is the World Agent-Based? Environment and Planning A, 32, 1409–1425.
Orcutt, G.H. (1957). A new type of socio-economic system. Review of Economics and Statistics, 58, 773–794.
Orcutt, G.H. (1986). Views on microanalytic simulation modeling. In G.H. Orcutt, J. Mertz, & H. Quinke (Eds.), Microanalytic Simulation Models to Support Social and Financial Study. Amsterdam, New York: North-Holland.
Orcutt, G.H. & Cochrane, D. (1949). A sampling study of the merits of the autoregressive and reduced form transformations in regression analysis. Journal of the American Statistical Association, 44, 356–372.
Orcutt, G.H., Greenberger, M., Korbel, J., & Rivlin, A. (1961). Microanalysis of Socio-economic Systems: A Simulation Study. New York: Harper & Row.
Orcutt, G.H., Caldwell, S., & Wertheimer II, R. (1976). Policy Exploration Through Microanalytic Simulation. Washington DC: Urban Institute.
Parunak, H.V.D., Savit, R., & Riolo, R.L. (1998). Agent-Based Modeling vs. Equation-Based Modeling: A Case Study and Users’ Guide. In Proc MABS’98 (pp. 10–25), INCS 1534. Berlin: Springer-Verlag.
Rao, A.S. & Georgeff, M. (1995). BDI Agents-From Theory to Practice. In V. Lesser (1995), pp. 312–319.
Rosenschein, S.J. & Kaelbling, L. (1986). The Synthesis of Digital Machines with Provable Epistemic Properties. In J.V. Halpern (Ed.), Proc Theoretical Aspects of Reasoning About Knowledge (pp. 83–98). San Mateo, Calif.: Morgan Kaufmann.
Searle, J.R. (1969). Speech Acts-An Essay in the Philosophy of Language. Cambridge University Press.
Shaw, A. (2000). CORSIM Analyst Documentation. Retrieved February 3, 2002, from http://www.strategicforecasting.com/docs.
Smith, R. (1980). The Contract Net Protocol-High-Level Communication and Control in a Distributed Problem Solver. IEEE Transactions on Computers, 29(12), 1104–1113.
Steels, L. (1990). Cooperation Between Distributed Agents through Self Organization. In Y. Demazeau & J.-P. Müller (Eds.), Decentralized AI (pp. 175–196). Amsterdam: North-Holland.
Stone, R. (1966). Mathematics in the Social Sciences and Other Essays. London: Chapman & Hall.
Tinbergen, J. (1939). Statistical Testing of Business Cycle Theories Vol. 2, Business Cycles in the United States of America 1919–1932. Geneva: League of Nations.
Verhagen, H.J.E. (2000). Norm Autonomous Agents. Dissertation. Stockholm: Dept of Computer & Systems Sciences, Stockholm University.
Wegener, M. & Spiekermann, K. (1996). The potential of microsimulation for urban models. In G.P. Clarke (Ed.), Microsimulation for Urban and Regional Policy Analysis (pp. 88–116). European Research in Regional Science 6. London: Pion.
Wellman, M.P. (1993). A Market-Oriented Programming Environment and its Application to Distributed Multicommodity Flow Problems. Journal of Artificial Intelligence Research, 1, 1–23.
Winograd, T. & Flores, F. (1986). Understanding Computers and Cognition. Norwood NJ: Ablex Pub. Corp.
Wooldridge, M. (2000). Reasoning about Rational Agents. Cambridge, Mass., London: The MIT Press.
Wurman, P.R., Wellman, M.P., & Walsh, W.E. (1998). The Michigan Internet AuctionBot: A Configurable Auction Server for Human and Software Agents. In Proc Conf Autonomous Agents (pp. 301–308). New York: Association for Computing Machinery.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Kluwer Academic Publishers
About this chapter
Cite this chapter
Boman, M., Holm, E. (2004). Multi-Agent Systems, Time Geography, and Microsimulations. In: Olsson, MO., Sjöstedt, G. (eds) Systems Approaches and Their Application. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2370-7_4
Download citation
DOI: https://doi.org/10.1007/1-4020-2370-7_4
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-2369-9
Online ISBN: 978-1-4020-2370-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)