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CSE 102 

Introduction to Analysis of Algorithms 

Asymptotic Growth of Functions  (CLRS 3.1) 

 

We introduce several types of asymptotic notation which are used to compare the relative performance 

and efficiency of algorithms.  As we shall see, the asymptotic run time of an algorithm gives a simple 

machine independent characterization of its complexity. 

 

Definition 1  Let 𝑔(𝑛) be a function.  The set 𝑂(𝑔(𝑛)) is defined as 

 

𝑂(𝑔(𝑛)) = { 𝑓(𝑛)  |  ∃𝑐 > 0, ∃𝑛0 > 0, ∀𝑛 ≥ 𝑛0: 0 ≤ 𝑓(𝑛) ≤ 𝑐𝑔(𝑛) }. 

 

In other words, 𝑓(𝑛) ∈ 𝑂(𝑔(𝑛)) if and only if there exist positive constants 𝑐, and 𝑛0, such that for all 

𝑛 ≥ 𝑛0, the inequality 0 ≤ 𝑓(𝑛) ≤ 𝑐𝑔(𝑛) is satisfied.  We shall say in this case that 𝑓(𝑛) is Big O of 

𝑔(𝑛), or that 𝑔(𝑛) is an asymptotic upper bound for 𝑓(𝑛).  

 

We often abuse notation slightly by writing 𝑓(𝑛) = 𝑂(𝑔(𝑛)) to mean 𝑓(𝑛) ∈ 𝑂(𝑔(𝑛)).  Actually 

𝑓(𝑛) ∈ 𝑂(𝑔(𝑛)) is itself an abuse of notation.  We should really write 𝑓 ∈ 𝑂(𝑔) since what we have 

defined is a set of functions, not a set of numbers.  The notational convention 𝑂(𝑔(𝑛)) is useful since it 

allows us to refer to the set 𝑂(𝑛3) say, without having to introduce a new function symbol for the 

polynomial 𝑛3.  Observe that if 𝑓(𝑛) = 𝑂(𝑔(𝑛)) then 𝑓(𝑛) is asymptotically non-negative, i.e. 𝑓(𝑛) is 

non-negative for all sufficiently large n, and likewise for 𝑔(𝑛).  We make the blanket assumption from 

now on that all functions under discussion are asymptotically non-negative. 

 

In practice we will be concerned with integer valued functions of a (positive) integer 𝑛 (𝑔: 𝒁+ → 𝒁+).  

However, in what follows, it is useful to consider 𝑛 to be a continuous real variable taking positive values 

and g to be real valued function (𝑔: 𝑹+ → 𝑹+).   

 

Geometrically 𝑓(𝑛) = 𝑂(𝑔(𝑛)) says: 

 

 

                                                                                                                     𝑐𝑔(𝑛) 

 

 

                                                                                                                    𝑓(𝑛) 

 

 

 

 

 

                                                                                                                       

                                               𝑛0 
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Example 1  10𝑛 + 100 = 𝑂(𝑛2 − 40𝑛 + 500).  Observe 0 ≤ 10𝑛 + 100 ≤ 𝑛2 − 40𝑛 + 500 for all 

𝑛 ≥ 40.  Thus we may take 𝑛0 = 40 and 𝑐 = 1 in the definition.  

 

                                                                                                                       𝑛2 − 40𝑛 + 500 

 

 

                                                                                                                       10𝑛 + 100 

 

                500   

 

 

 

 

 

                100 

 

                                                                                                                      n    

                                      10                                              40 

 

 

In fact 𝑎𝑛 + 𝑏 = 𝑂(𝑐𝑛2 + 𝑑𝑛 + 𝑒) for any constants a-e, and more generally 𝑝(𝑛) = 𝑂(𝑞(𝑛)) 

whenever 𝑝(𝑛) and 𝑞(𝑛) are polynomials satisfying deg( 𝑝) ≤ deg( 𝑞).  (See exercises (c) and (d) at 

the end of this handout.) 

 

Definition 2  Let 𝑔(𝑛) be a function and define the set Ω(𝑔(𝑛)) to be 

 

Ω(𝑔(𝑛)) = { 𝑓(𝑛)  |  ∃𝑐 > 0, ∃𝑛0 > 0, ∀𝑛 ≥ 𝑛0 ∶   0 ≤ 𝑐𝑔(𝑛) ≤ 𝑓(𝑛) }. 

 

We say 𝑓(𝑛) is big Omega of 𝑔(𝑛), and that 𝑔(𝑛) is an asymptotic lower bound for 𝑓(𝑛).  As before 

we write 𝑓(𝑛) = 𝛺(𝑔(𝑛)) to mean 𝑓(𝑛) ∈ Ω(𝑔(𝑛)).  The geometric interpretation is: 

 

 

                                                                                                                          𝑓(𝑛) 

 

 

                                                                                                                          𝑐𝑔(𝑛) 

 

 

 

 

 

 

                                                         𝑛0 
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Theorem 1  𝑓(𝑛) = 𝑂(𝑔(𝑛)) if and only if 𝑔(𝑛) = Ω(𝑓(𝑛)). 

 

Proof:  If 𝑓(𝑛) = 𝑂(𝑔(𝑛)) then there exist positive numbers 𝑐1, 𝑛1 such that 0 ≤ 𝑓(𝑛) ≤ 𝑐1𝑔(𝑛) for 

all 𝑛 ≥ 𝑛1.  Let 𝑐2 =
1

𝑐1
 and 𝑛2 = 𝑛1.  Then 0 ≤ 𝑐2𝑓(𝑛) ≤ 𝑔(𝑛) for all 𝑛 ≥ 𝑛2 , proving 𝑔(𝑛) =

Ω(𝑓(𝑛)).  The converse is similar and we leave it to the reader.                                                                       ■   

 

Definition 3  Let 𝑔(𝑛) be a function and define the set 𝛩(𝑔(𝑛)) = 𝑂(𝑔(𝑛)) ∩ 𝛺(𝑔(𝑛)).  Equivalently 

 

Θ(𝑔(𝑛)) = { 𝑓(𝑛) | ∃𝑐1 > 0, ∃𝑐2 > 0, ∃𝑛0 > 0, ∀𝑛 ≥ 𝑛0: 0 ≤ 𝑐1𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2𝑔(𝑛) } 

 

We write 𝑓(𝑛) = Θ(𝑔(𝑛)) and say that 𝑔(𝑛) is an asymptotically tight bound for 𝑓(𝑛).  We interpret 

this geometrically as: 

 

                                                                                                                            𝑐2𝑔(𝑛) 

 

                                                                                                                            𝑓(𝑛) 

 

                                                                                                                            𝑐1𝑔(𝑛) 

 

 

 

 

 

                                                                𝑛0 

 

Exercise 1  Prove that 𝑓(𝑛) = Θ(𝑔(𝑛)) if and only if 𝑔(𝑛) = Θ(𝑓(𝑛)). 

 

Exercise 2  Let 𝑔(𝑛) be any function, and 𝑐 > 0.  Prove that 𝑐𝑔(𝑛) = 𝑂(𝑔(𝑛)), and 𝑐𝑔(𝑛) = Ω(𝑔(𝑛)), 

whence 𝑐𝑔(𝑛) = Θ(𝑔(𝑛)). 

 

Example 2  Prove that √𝑛 + 10 = Θ(√𝑛). 

Proof:  According to the definition, we must find positive numbers 𝑐1, 𝑐2, 𝑛0, such that the inequality 

0 ≤ 𝑐1√𝑛 ≤ √𝑛 + 10 ≤ 𝑐2√𝑛 holds for all 𝑛 ≥ 𝑛0.  Pick 𝑐1 = 1, 𝑐2 = √2, and 𝑛0 = 10.  Then if 𝑛 ≥
𝑛0 we have:  

                       −10 ≤ 0    and     10 ≤ 𝑛 

∴          −10 ≤ (1 − 1)𝑛     and     10 ≤ (2 − 1)𝑛 

∴        −10 ≤ (1 − 𝑐1
2)𝑛    and     10 ≤ (𝑐2

2 − 1)𝑛 

∴            𝑐1
2𝑛 ≤ 𝑛 + 10     and     𝑛 + 10 ≤ 𝑐2

2𝑛, 

∴                          𝑐1
2𝑛 ≤ 𝑛 + 10 ≤ 𝑐2

2𝑛, 

∴                     𝑐1√𝑛 ≤ √𝑛 + 10 ≤ 𝑐2√𝑛, 

 

as required.                                                                                                                                               ■ 

 

The reader may find our choice of  values for the constants 𝑐1, 𝑐2, 𝑛0 somewhat mysterious.  Adequate 

values for these constants can usually be obtained by working backwards algebraically from the 
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inequality to be proved.  Notice that in this example there are many valid choices.  For instance one 

checks easily that 𝑐1 = √1/2, 𝑐2 = √3/2, and 𝑛0 = 20 work equally well. 

Exercise 3  Let 𝑎, 𝑏 be real numbers, with 𝑏 > 0.  Prove directly from the definition that (𝑛 + 𝑎)𝑏 =
Θ(𝑛𝑏).  (By the end of this handout, we will learn a much easier way to prove this.) 

 

Theorem 2  If ℎ(𝑛) = 𝑂(𝑔(𝑛)) and if 𝑓(𝑛) ≤ ℎ(𝑛) for all sufficiently large n, then 𝑓(𝑛) = 𝑂(𝑔(𝑛)). 

Proof:  The above hypotheses say that there exist positive numbers 𝑐 and 𝑛1 such that ℎ(𝑛) ≤ 𝑐𝑔(𝑛) 

for all 𝑛 ≥ 𝑛1, and that there exists positive 𝑛2 such that 0 ≤ 𝑓(𝑛) ≤ ℎ(𝑛) for all 𝑛 ≥ 𝑛2.  (Recall all 

functions under discussion, in particular 𝑓(𝑛), are assumed to be asymptotically non-negative.)  Then 

for all  𝑛 ≥ 𝑛0 = max( 𝑛1, 𝑛2) we have 0 ≤ 𝑓(𝑛) ≤ 𝑐𝑔(𝑛), showing that 𝑓(𝑛) = 𝑂(𝑔(𝑛)).              ■ 

 

Exercise 4  Prove that if ℎ1(𝑛) ≤ 𝑓(𝑛) ≤ ℎ2(𝑛) for all sufficiently large n, where ℎ1(𝑛) = Ω(𝑔(𝑛)) 

and ℎ2(𝑛) = 𝑂(𝑔(𝑛)), then 𝑓(𝑛) = Θ(𝑔(𝑛)). 

 

Example 3  Let 𝒌 ≥ 𝟏 be a fixed integer.  Prove that ∑ 𝒊𝒌𝒏
𝒊=𝟏 = 𝚯(𝒏𝒌+𝟏). 

Proof:  Observe that ∑ 𝑖𝑘𝑛
𝑖=1 ≤ ∑ 𝑛𝑘𝑛

𝑖=1 = 𝑛 ⋅ 𝑛𝑘 = 𝑛𝑘+1 = 𝑂(𝑛𝑘+1).  Also 

 

∑ 𝑖𝑘𝑛
𝑖=1 ≥ ∑ 𝑖𝑘𝑛

𝑖=⌈𝑛/2⌉   

 

            ≥ ∑ ⌈𝑛/2⌉𝑘𝑛
𝑖=⌈𝑛/2⌉  

 

            = (𝑛 − ⌈𝑛/2⌉ + 1) ⋅ ⌈𝑛/2⌉𝑘 

 

            = (⌊𝑛/2⌋ + 1) ⋅ ⌈𝑛/2⌉𝑘 

 

            > (𝑛/2 − 1 + 1) ⋅ (𝑛/2)𝑘 

 

            = (1/2)𝑘+1𝑛𝑘+1 

 

            = Ω(𝑛𝑘+1) 

 

By the preceding exercise we conclude  ∑ 𝑖𝑘𝑛
𝑖=1 = Θ(𝑛𝑘+1).                                                                  ■   

 

When asymptotic notation appears in a formula such as 𝑓(𝑛) =  3𝑛2 + Θ(𝑛), we interpret Θ(𝑛) to stand 

for some function in the class Θ(𝑛) which we do not care to specify.  The expression ∑ Θ(𝑖)𝑛
𝑖=1  can be 

puzzling.  Note that Θ(1) + Θ(2) + Θ(3) + ⋯ + Θ(𝑛) is meaningless, since Θ(constant) consists of all 

functions that are bounded above and below by constants.  We interpret Θ(𝑖) in this expression to stand 

for a single function 𝑓(𝑖) in the class Θ(𝑖), evaluated at 𝑖 = 1, 2, … , 𝑛. 

 

Exercise 5  Prove that ∑ Θ(𝑖)𝑛
𝑖=1 = Θ(𝑛2).  The left hand side stands for a single function 𝑓(𝑖) in Θ(𝑖) 

summed over 𝑖 = 1, 2, 3, … , 𝑛.  By the previous exercise it is sufficient to show that ℎ1(𝑛) ≤
∑ 𝑓(𝑖)𝑛

𝑖=1 ≤ ℎ2(𝑛) for all sufficiently large n, where ℎ1(𝑛) = Ω(𝑛2) and ℎ2(𝑛) = 𝑂(𝑛2). 

 

Definition 4 𝑜(𝑔(𝑛)) = { 𝑓(𝑛)  |  ∀𝑐 > 0, ∃𝑛0 > 0, ∀𝑛 ≥ 𝑛0:  0 ≤ 𝑓(𝑛) < 𝑐𝑔(𝑛) }.  We say that 𝑔(𝑛) 

is a strict Asymptotic upper bound for 𝑓(𝑛) and write 𝑓(𝑛) = 𝑜(𝑔(𝑛)) as before.   
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Lemma 1   𝑓(𝑛) = 𝑜(𝑔(𝑛)) if and only if lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= 0. 

Proof:  Observe that 𝑓(𝑛) = 𝑜(𝑔(𝑛)) if and only if   ∀𝑐 > 0, ∃𝑛0 > 0, ∀𝑛 ≥ 𝑛0:  0 ≤
𝑓(𝑛)

𝑔(𝑛)
< 𝑐, which 

is the very definition of the limit statement lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= 0.                                                                        ■  

 

Example 4  ln( 𝑛) = 𝑜(𝑛) since lim
𝑛→∞

ln(𝑛)

𝑛
= 0.  (Hint: use l’Hopitals rule.) 

 

Example 5  𝑛𝑘 = 𝑜(𝑒𝑛) for any 𝑘 > 0 since lim
𝑛→∞

𝑛𝑘

𝑒𝑛 = 0.  (Apply l’Hopitals rule ⌈𝑘⌉ times.)  One shows 

similarly that 𝑛𝑘 = 𝑜(𝑏𝑛) for any 𝑏 > 1.  In other words, any polynomial grows strictly slower than any 

exponential. 

 

By comparing definitions of 𝑜(𝑔(𝑛)) and 𝑂(𝑔(𝑛)) one sees immediately that 𝑜(𝑔(𝑛)) ⊆ 𝑂(𝑔(𝑛)).   

 

Exercise 6  Prove that 𝑜(𝑔(𝑛)) ∩ Ω(𝑔(𝑛)) = ∅ by verifying that no function can belong to both 

𝑜(𝑔(𝑛)) and Ω(𝑔(𝑛)).  Thus 𝑜(𝑔(𝑛)) ⊆ 𝑂(𝑔(𝑛)) − Θ(𝑔(𝑛)).   

 

Definition 5  𝜔(𝑔(𝑛)) = { 𝑓(𝑛)  |  ∀𝑐 > 0, ∃𝑛0 > 0, ∀𝑛 ≥ 𝑛0:  0 ≤ 𝑐𝑔(𝑛) < 𝑓(𝑛) }.  Here we say that 

𝑔(𝑛) is a strict asymptotic lower bound for 𝑓(𝑛) and write 𝑓(𝑛) = 𝜔(𝑔(𝑛)). 

 

Exercise 7  Prove 𝑓(𝑛) = 𝜔(𝑔(𝑛)) if and only if lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= ∞.  Also prove 𝜔(𝑔(𝑛)) ∩ 𝑂(𝑔(𝑛)) = ∅, 

whence 𝜔(𝑔(𝑛)) ⊆ Ω(𝑔(𝑛)) − Θ(𝑔(𝑛)).   

 

The following picture emerges. 

 

 

                                                       𝑂(𝑔(𝑛))                         𝛺(𝑔(𝑛)) 

 

 

 

                                              𝑜(𝑔(𝑛))                𝛩(𝑔(𝑛))              𝜔(𝑔(𝑛)) 

 

 

 

 

 

 

 

Theorem 3  If lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= 𝐿, where 0 ≤ 𝐿 < ∞, then 𝑓(𝑛) = 𝑂(𝑔(𝑛)).  (Note: the converse is false.) 

Proof:  The limit statement says ∀𝜀 > 0, ∃𝑛0 > 0, ∀𝑛 ≥ 𝑛0:  |
𝑓(𝑛)

𝑔(𝑛)
− 𝐿| < 𝜀.  Since this holds for all 𝜀, 

we may set 𝜀 = 1.  Then there exists a positive 𝑛0  such that for all 𝑛 ≥ 𝑛0: 

 

   |
𝑓(𝑛)

𝑔(𝑛)
− 𝐿| < 1 
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∴     −1 <
𝑓(𝑛)

𝑔(𝑛)
− 𝐿 < 1 

 

∴             
𝑓(𝑛)

𝑔(𝑛)
< 𝐿 + 1 

 

∴           𝑓(𝑛) < (𝐿 + 1) ⋅ 𝑔(𝑛). 

 

Now taking 𝑐 = 𝐿 + 1 in the definition of O yields 𝑓(𝑛) = 𝑂(𝑔(𝑛)) as claimed.                                 ■ 

 

Theorem 4  If lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= 𝐿, where 0 < 𝐿 ≤ ∞, then 𝑓(𝑛) = Ω(𝑔(𝑛)). 

Proof:  The limit statement implies lim
𝑛→∞

𝑔(𝑛)

𝑓(𝑛)
= 𝐿′, where 𝐿′ = 1/𝐿 and hence 0 ≤ 𝐿′ < ∞.  By the 

preceding theorem 𝑔(𝑛) = 𝑂(𝑓(𝑛)), and therefore 𝑓(𝑛) = Ω(𝑔(𝑛)).                                                   ■   

 

Exercise 8  Prove that if lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= 𝐿, where 0 < 𝐿 < ∞, then 𝑓(𝑛) = Θ(𝑔(𝑛)). 

 

Although 𝑜(𝑔(𝑛)), 𝜔(𝑔(𝑛)), and a certain subset of Θ(𝑔(𝑛)) are characterized by limits, the full sets 

𝑂(𝑔(𝑛)), Ω(𝑔(𝑛)), and Θ(𝑔(𝑛)) have no such characterization as the following examples show. 

 

Example A  Let 𝑔(𝑛) = 𝑛 and 𝑓(𝑛) = (1 + sin( 𝑛)) ⋅ 𝑛. 

 

                                                                                                             2𝑔(𝑛) 

 

 

                                                                                                                𝑓(𝑛) 

 

 

 

 

 

 

 

 

Clearly 𝑓(𝑛) = 𝑂(𝑔(𝑛)), but 
𝑓(𝑛)

𝑔(𝑛)
= 1 + sin( 𝑛), whose limit does not exist, whence 𝑓(𝑛) ≠ 𝑜(𝑔(𝑛)).  

Observe also that 𝑓(𝑛) ≠ Ω(𝑔(𝑛)) (why?).  Therefore 𝑓(𝑛) ∈ 𝑂(𝑔(𝑛)) − Θ(𝑔(𝑛)) − 𝑜(𝑔(𝑛)), 

showing that  the containment 𝑜(𝑔(𝑛)) ⊆ 𝑂(𝑔(𝑛)) − Θ(𝑔(𝑛)) is in general strict. 

 

Example B  Let 𝑔(𝑛) = 𝑛 and 𝑓(𝑛) = (2 + sin( 𝑛)) ⋅ 𝑛.   

                                                                                                              3𝑔(𝑛) 

 

 

                                                                                                              𝑓(𝑛) 

 

 

                                                                                                              𝑔(𝑛) 
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Since 𝑛 ≤ (2 + sin( 𝑛)) ⋅ 𝑛 ≤ 3𝑛 for all 𝑛 ≥ 0, we have 𝑓(𝑛) = 𝛩(𝑔(𝑛)), but 
𝑓(𝑛)

𝑔(𝑛)
= 2 + sin( 𝑛) 

whose limit does not exist.   

 

Exercise 9  Find functions 𝑓(𝑛) and 𝑔(𝑛) such that 𝑓(𝑛) ∈ Ω(𝑔(𝑛)) − Θ(𝑔(𝑛)), but lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
 does not 

exist (even in the sense of being infinite), so that 𝑓(𝑛) ≠ 𝜔(𝑔(𝑛)). (Call this Example C.) 

 

 

These limit theorems and counter-examples can be summarized in the following diagram.  Here L 

denotes the limit 𝐿 = lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
, if it exists. 

 

 

 

                                                  𝑂(𝑔(𝑛))                           Ω(𝑔(𝑛)) 

                                                                      Θ(𝑔(𝑛)) 

 

                                     𝑜(𝑔(𝑛))                                                     𝜔(𝑔(𝑛)) 

                                      𝐿 = 0                     0 < 𝐿 < ∞                  𝐿 = ∞ 

 

 

 

                                                   Ex A              Ex B            Ex C 

 

 

 

 

 

In spite of the above counter-examples, the preceding limit theorems are a very useful tool for 

establishing asymptotic comparisons between functions.  For instance recall the earlier exercise to show 

(𝑛 + 𝑎)𝑏 = Θ(𝑛𝑏) for real numbers 𝑎, and 𝑏 with 𝑏 > 0.  The result follows immediately from the fact 

that  lim
𝑛→∞

(𝑛+𝑎)𝑏

𝑛𝑏 = lim
𝑛→∞

(1 +
𝑎

𝑛
)

𝑏

= 1𝑏 = 1, since 0 < 1 < ∞. 

 

Exercise 10  Use limits to prove the following: 

 

a. 𝑛 ln( 𝑛) = 𝑜(𝑛2).  More generally, show 𝑛 log( 𝑛) = 𝑜(𝑛2) where the log has any base 𝑏 > 1. 

b. 𝑛52𝑛 = 𝜔(𝑛10). 

c. If 𝑃(𝑛) is a polynomial of degree 𝑘 ≥ 0, then 𝑃(𝑛) = Θ(𝑛𝑘). 

d. For any positive real numbers 𝛼 and 𝛽:  𝑛𝛼 = 𝑜(𝑛𝛽) iff 𝛼 < 𝛽, 𝑛𝛼 = Θ(𝑛𝛽) iff 𝛼 = 𝛽, and 𝑛𝛼 =
𝜔(𝑛𝛽) iff 𝛼 > 𝛽. 

e. For any positive real numbers a and b:  𝑎𝑛 = 𝑜(𝑏𝑛) iff 𝑎 < 𝑏, 𝑎𝑛 = Θ(𝑏𝑛) iff 𝑎 = 𝑏, and 𝑎𝑛 =
𝜔(𝑏𝑛) iff 𝑎 > 𝑏. 

f. For any positive real numbers a and b:  log𝑎( 𝑛) = Θ(log𝑏( 𝑛)). 

g. 𝑓(𝑛) + 𝑜(𝑓(𝑛)) = 𝛩(𝑓(𝑛)). 
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There is an analogy between the asymptotic comparison of functions 𝑓(𝑛) and 𝑔(𝑛), and the comparison 

of real numbers x and y. 

 

𝑓(𝑛) = 𝑂(𝑔(𝑛))    ~    𝑥 ≤ 𝑦 

𝑓(𝑛) = Θ(𝑔(𝑛))    ~    𝑥 = 𝑦 

𝑓(𝑛) = Ω(𝑔(𝑛))    ~    𝑥 ≥ 𝑦 

𝑓(𝑛) = 𝑜(𝑔(𝑛))     ~    𝑥 < 𝑦 

𝑓(𝑛) = 𝜔(𝑔(𝑛))    ~    𝑥 > 𝑦 

 

If both f and g are polynomials of degrees x and y respectively, then the analogy is exact, as can be seen 

from parts (c) and (d) of the preceding exercise.  In general though, the analogy is not exact since there 

exist pairs of functions which are not comparable. 

 

 

Exercise 11  Let 𝑓(𝑛) = 𝑛sin(𝑛) and 𝑔(𝑛) = √𝑛.  Show that 𝑓(𝑛) and 𝑔(𝑛) are incomparable, i.e. 𝑓(𝑛) 

is in neither of the classes 𝑂(𝑔(𝑛)) nor Ω(𝑔(𝑛)). 

 

 

Exercise 12  Prove the following facts. 

 

a. Θ(𝑓(𝑛)) + Θ(𝑔(𝑛)) = Θ(𝑓(𝑛) + 𝑔(𝑛)).  In other words, if ℎ1(𝑛) = Θ(𝑓(𝑛)), and ℎ2(𝑛) =
Θ(𝑔(𝑛)), then ℎ1(𝑛) + ℎ2(𝑛) = Θ(𝑓(𝑛) + 𝑔(𝑛)).  Prove this also for 𝑂 and Ω. 

 

b. Θ(𝑓(𝑛)) ⋅ Θ(𝑔(𝑛)) = Θ(𝑓(𝑛) ⋅ 𝑔(𝑛)), using the same assumptions as in (a) above.  Prove this 

also for 𝑂 and Ω. 

 

c. Suppose 𝑓(𝑛) and 𝑔(𝑛) are asymptotically positive.  If 𝑓(𝑛) = Θ(𝑔(𝑛)), then 1/𝑓(𝑛) =

Θ(1/𝑔(𝑛)). 

 

d. Suppose 𝑓(𝑛) ≥ 𝛼 for some 𝛼 > 1 and all sufficiently large n.  Then ⌊𝑓(𝑛)⌋ = Θ(𝑓(𝑛)), and 
⌈𝑓(𝑛)⌉ = Θ(𝑓(𝑛)).  (Use that for any 𝑥 ∈ ℝ:  𝑥 − 1 < ⌊𝑥⌋ ≤ 𝑥 ≤ ⌈𝑥⌉ < 𝑥 + 1.)  Note the 

existence of 𝛼 is necessary for both conclusions, since ⌊1/𝑛⌋ = 0 and ⌈1/𝑛⌉ = 1, and yet neither 

0 nor 1 are in Θ(1/𝑛). 

 

 

Exercise 13  Determine whether the first function is o, Θ, or 𝜔 of the second function. 

 

a. 𝑛𝑛 compared to 2𝑛 lg 𝑛  

b. 𝑛𝑛 compared to 2𝑛 ln 𝑛 

c. 32𝑛
 compared to 23𝑛

 

d. √ln 𝑛 compared to ln( ln 𝑛). 

e. √𝑛 compared to √2
ln 𝑛

 

f. 𝑛ln( ln 𝑛) compared to 2(ln 𝑛)2
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Example 6  Let 𝑎 > 1 and 𝑏 > 1.  Then  

 

𝑎𝑏𝑛
= { 

𝜔(𝑏𝑎𝑛
)    if  𝑎 < 𝑏

Θ(𝑏𝑎𝑛
)    if  𝑎 = 𝑏

𝑜(𝑏𝑎𝑛
)    if 𝑎 > 𝑏

 

 

Proof:   

We compute lim
𝑛→∞

(𝑎𝑏𝑛
/𝑏𝑎𝑛

) by first computing lim
𝑛→∞

ln (𝑎𝑏𝑛
/𝑏𝑎𝑛

).  Observe by Exercise 9e above, 

 

ln(𝑎𝑏𝑛
/𝑏𝑎𝑛

) = 𝑏𝑛(ln 𝑎) − 𝑎𝑛(ln 𝑏) →   {
∞    if 𝑎 < 𝑏
0    if 𝑎 = 𝑏

−∞    if 𝑎 > 𝑏
    as  𝑛 → ∞.   

 

Applying the exponential function (base e) to these limits gives us 

 

lim
𝑛→∞

(𝑎𝑏𝑛
/𝑏𝑎𝑛

) = {
∞    if 𝑎 < 𝑏
1    if 𝑎 = 𝑏
0    if 𝑎 > 𝑏

 

 

from which the result follows.                                                                                                             ■ 

 

 

Definition 6   We say 𝑓(𝑛) is asymptotically equivalent to 𝑔(𝑛), and write 𝑓(𝑛) ~ 𝑔(𝑛), if and only if 

lim
𝑛→∞

(𝑓(𝑛)/𝑔(𝑛)) = 1.   

 

Obviously 𝑓(𝑛) ~ 𝑔(𝑛) implies that 𝑓(𝑛) = Θ(𝑔(𝑛)), but it contains more information in that it tells us 

that the constant burried in the Θ notation is 1. 

 

 

Exercise 14  Prove 𝑓(𝑛) ~ 𝑔(𝑛) if and only if 𝑓(𝑛) = 𝑔(𝑛) + 𝑜(𝑔(𝑛)). 


