D-PRINT (DeeP learning - IR INtensity of TCs)

D-PRINT is neural network applied to GEO IR imagery, along with selected
environmental variables to estimate TC intensity (max sustained 1-min. 10-m wind,

MSW). D-PRINT is the same architecture as D-MINT, but it does not include any MW

imagery. As a result, D-PRINT is slightly less skillful than D-MINT but provides continuous

intensity estimates.

D-PRINT is operated in real-time and processed at the top of every hour, assuming at
least 90% of the TC in the image is covered and environmental predictors are available.

D-PRINT has a latency of about 30 minutes after the top of the hour.

Output Graphics

The resulting model output is a histogram of TC

intensity probabilities for 15 different percentiles: 1%,
2nd 5th o 10th, 20t ..., 90th, 95t 98th and 99th. The D-
PRINT current intensity (MSW) is calculated from the
inner average (30t to 70t percentile intensities),
which has the best record for accuracy. An example
for Hurricane Dorian (2019) is shown to the right.

In real-time output graphics (example for TC

Mocha (2023) shown to the right), the
estimated current D-PRINT intensity is

plotted as a circle with whiskers out to the
25% to 75 percentile intensities. Wider
whiskers mean D-PRINT is less certain of the
intensity estimate. The working best track
intensity from NHC or JTWC is depicted with
a black line. A table of the average intensity
and 25 to 75% percentile intensities is also
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Model Configuration and Development
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D-PRINT uses 5 normalized IR window (10.3 um) images over the previous 12
hours (or fewer if not all are available). While the above image displays each IR
image as an individual 128x128x1 input for clarity, the actual IR image input into
D-PRINT is 128x128x5. Thus, D-PRINT can identify differences between the IR
images (see next page).
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The final inputs into D-PRINT are scalar predictors from the SHIPS Isdiag files.

D-PRINT is trained on global tropical cyclones.

North Eastern Western North Indian Southern Global
Atlantic North Pacific | North Pacific Ocean Hemisphere

8578 9253 14,296 1190 7814 41,131
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Diagnosing the D-PRINT intensity estimates: A Brief Guide to SHAP Values

The power of the deep learning model comes from the ability to form complex, nonlinear

relationships between images and the environment in order to predict an unknown feature
(TC intensity). However, this power also complicates our ability to interpret the reasoning

used by the model. To address this, the SHapley Additive Explanation (SHAP) method
approximates the nonlinear model as a linear model, in order to give a rough idea of the
sensitivities of the model result to each input. We have organized a set of diagnostic
graphics to show a first-order approximation of how the model arrives at its answer. In the
next pages we’ll break down the three elements of the SHAP diagnostic graphic.

1. Full input breakdown
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2. IR contribution

Comparison of IR SHAP Values for 2023_01B at 20230512 1700UTC
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1. Full input breakdown
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The top rows summarize the contributions of the satellite imagery to

the final estimate. Each point on the chart stands for the amount that -1,
the image adds to the final estimate (starting at a baseline 60 knots).
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The remaining rows summarize the contributions of the environmental/historical
predictors to the final estimate. Refer to these to pick out

1) Whether the environment/history is generally favorable or unfavorable

2) Whether it identifies any contributors that are uniquely influential

3) Whether any contributor may be in error

Low High

Finally, the color of each point indicates its value above or below the climatological average for TCs. For
instance, the Distance to Land is blue, indicating a relatively short distance.

As for the image contribution coloring (top plot), we have simply set the colors to match our coloring of
image brightness temperatures, where blue means warmer and red means colder.



110 kt max. sustained winds (1 min.)

Comparison of IR SHAP Values for 2023_01B at 20230512 1700UTC

D-PRINT (DeeP learning - IR INtensity of TCs)

2. IR contribution (spatial SHAP values)
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D-MINT inputs five IR
imagery time frames
together. However, the
images are always
significantly
autocorrelated, so a
high contribution from
one time frame does
not rule out the
influence of other time
frames. On the left
case, the second
strongest signal comes
from the 12 hr old
image. However, you
can interpret this as a
signal of the eyewall
strength from all five
images because the
BTs are getting colder,
and you can think of it
as the SHAP algorithm
choosing this signal to
emphasize among
several at the exact
location.
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Weak tropical cyclone
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Unlike in the Full Input Breakdown, the|blue-to-redcolors are the pixelwise SHAP values for the IR
images. These SHAP values sum up to the number listed above each image, which is plotted on the Full

Input Breakdown.
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Model Performance Statistics

Root Mean Squared Error for 2019-2021 Global TCs
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D-PRINT has the lowest error in the Western North Pacific. In the North Atlantic and
Eastern North Pacific, SATCON has a lower error but D-PRINT has less of a delay. For
the North Indian Ocean, D-PRINT has the highest error. ADT has a higher error in the
Southern Hemisphere.
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D-PRINT ADT AIDT SATCON

D-PRINT has the lowest high bias for weak TCs (< 40 kts) and less of a low bias for
strong TCs (> 100 or 120 kts depending on the basin), except for SATCON

Developers: Sarah Griffin and Tony Wimmers

Contact: sarah.griffin@ssec.wisc.edu

Reference: Griffin, S. M., A. Wimmers, and C. S. Velden, 2023: Predicting Short-term
Intensity change in Tropical Cyclones using a Convolutional Neural Network. In
Review
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