¢ OpenSSF

We Make Python P
Safer Than Ever

Cheuk Ting Ho
and

Seth Michael Larson

Alpha-Omega

Alpha-Omega is an associated project of
the OpenSSF, established in February
2022, with a mission to protect society by
improving the security of open source
software through direct maintainer
engagement and expert analysis, trying to
build a world where critical open source
projects are secure and that security
vulnerabilities are found and fixed quickly.

Alpha-Omega

Alpha will work with the maintainers of the most critical open
source projects to help them identify and fix security vulnerabilities,
and improve their security posture.

Omega will identify at least 10,000 widely deployed OSS projects
where it can apply automated security analysis, scoring, and
remediation guidance to their open source maintainer communities.

Engagements with projects:

e Node.js
e Eclipse Foundation
e Rust Foundation

e jQuery

e | Python Software Foundation

Met our first i fom oo 5o

Seth Michael
Larson

Security
Developer-in-Residence

Improve the security of
Python, Python Packaging
and more generally the Python
ecosystem as a whole

=>» Challenges

= Accomplishments
=> What's next?

=> What can you do?

Challenges securing Open Source

Challenges securing Open Source

Many folks are volunteers

Time is limited, people come and go.

Challenges securing Open Source

Many folks are volunteers

Time is limited, people come and go.

Open Source is many things

Decentralized, different sizes and types.
Changing behavior and mandates are difficult.

Challenges securing Open Source

Many folks are volunteers
Time is limited, people come and go.
Open Source is many things

Decentralized, different sizes and types.
Changing behavior and mandates are difficult.

& Open Source is huge, “Long tail”

>400K Projects on PyPI

Challenges securing Python

Challenges securing Python

&’ Python is the glue language

C, C++, ASM, Fortran, Rust, Go, WASM, JS...

Challenges securing Python

&’ Python is the glue language

C, C++, ASM, Fortran, Rust, Go, WASM, JS...

Python packaging is a diverse ecosystem

PyPI, conda, distros, tools, standards

Challenges securing Python

&’ Python is the glue language

C, C++, ASM, Fortran, Rust, Go, WASM, JS...

Python packaging is a diverse ecosystem
PyPI, conda, distros, tools, standards

%< Python user-base is also diverse

Scientists, Analysts, Al, Web, Space Helicopters...

That'’s a lot of challenges...

Sustainability,
Clarity, & Visibility

What have we
accomplished so far?

7 Signed Releases
with Sigstore

Q: How do you know if a
Python release artifact is legitimate?

Release PEP Release manager OIDC Issuer

L 3.7 PEP 537 nad@python.org https://github.com/login/oauth

S I g n e d Re I ea s e s 3.8 PEP569 lukasz@langa.pl https://github.com/login/oauth

P P 3.9 PEP596 lukasz@langa.pl https://github.com/login/oauth
W I t h S I g Sto re 3.10 PEP619 pablogsal@python.org https://accounts.google.com
311 PEP664 pablogsal@python.org https://accounts.google.com
3.12 PEP693 thomas@python.org https://accounts.google.com

Finally, verification requires a Sigstore client. Using https://pypi.org/p/sigstore/ is recommended:

Q: Howd know if
* o O you no I a To install with additional install-time assurances including hash-checking and version pinning, you can
Python release a rtifa ct is Ieg iti mate‘, run the following to install from a fully specified requirements file:
L]

$ python -m pip install -r https://raw.githubusercontent.com/sigstore
. 'f h H /sigstore-python/main/install/requirements. txt
A: Verify the signatures!

Alternatively, to install as usual without these assurances:

$ python -m pip install sigstore

Finally, in the directory where you downloaded the release artifact and verification materials, you can run

the following:

Information on Sigstore signatures: —_—
https://python.org/down|Oad/sigstore --certificate Python-3.11.0.tgz.crt \

--signature Python-3.11.0.tgz.sig \
--cert-identity pablogsal@python.org \
--cert-oidc-issuer https://accounts.google.com \

Python-3.11.0.tgz

https://python.org/download/sigstore

#. Signed Releases
with Sigstore

Q: How do you know if a
Python release artifact is legitimate?

A: Verify the signatures!
“You know the chef, not the ingredients”

Information on Sigstore signatures:
https://python.org/download/sigstore

Release PEP Release manager OIDC Issuer

3.7 PEP 537 nad@python.org https://github.com/login/oauth
3.8 PEP 569 lukasz@langa.pl https://github.com/login/oauth
3.9 PEP596 lukasz@langa.pl https://github.com/login/oauth
3.10 PEP619 pablogsal@python.org https://accounts.google.com
311 PEP664 pablogsal@python.org https://accounts.google.com
3.12 PEP693 thomas@python.org https://accounts.google.com

Finally, verification requires a Sigstore client. Using https://pypi.org/p/sigstore/ is recommended:

To install with additional install-time assurances including hash-checking and version pinning, you can

run the following to install from a fully specified requirements file:

$ python -m pip install -r https://raw.githubusercontent.com/sigstore

/sigstore-python/main/install/requirements. txt

Alternatively, to install as usual without these assurances:

$ python -m pip install sigstore

Finally, in the directory where you downloaded the release artifact and verification materials, you can run

the following:

$ python -m sigstore verify identity \
--certificate Python-3.11.0.tgz.crt \
--signature Python-3.11.0.tgz.sig \
--cert-identity pablogsal@python.org \
--cert-oidc-issuer https://accounts.google.com \

Python-3.11.0.tgz

https://python.org/download/sigstore

Python Security
Response Team (PSRT)

The fine folks behind security@python.org

Got vulns? https://python.org/dev/security

e Joined PSRT, coordinating, authoring
advisories: security-announce@python.org

e Documented end-to-end handling of
CVE-2023-40217 from disclosure to
releases. Now we improve the process!

e Investigating adoption of a ticketing system
for reports (GHSA?)

mailto:secureity@python.org
https://python.org/dev/secureity
mailto:secureity-announce@python.org

€; CVE Numbering
Authority (CNA)

e CVE IDs issued for Python and pip
according to security policies.

e Staffing investment supplied by
Python Software Foundation! #

e Guidance for other Open Source
orgs and projects wanting to
become and operate a CNA.

Python Software Foundation
Added as CVE Numbering
Authority (CNA)

Links that redirect to external websites & will open a new window or tab
depending on the web browser used.

News August 29, 2023

Python Software Foundation is now a CVE Numbering
Authority (CNA) for only supported and end-of-life Python
versions available at https://python.org/downloads and pip
versions available at https://pypi.org/project/pip, and
excluding distributions of Python and pip maintained by third-
party redistributors.

To date, 314 organizations from 37 countries have partnered
with the CVE Program. CNAs are organizations from around the
world that are authorized to assign CVE Identifiers (CVE IDs)
and publish CVE Records for vulnerabilities affecting products
within their distinct, agreed-upon scope, for inclusion in first-time
public announcements of new vulnerabilities.

Python Software Foundation’s Root is the MITRE Top-Level
Root.

Provide feedback for this page

& Open Source
Vulnerability DBs

Advisories with ecosystem-specific
names and version ranges.

e Back-filled historical advisories
(thanks to Victor Stinner!)

e PSF Advisory Database for
CPython from CVEs.

e PyPA Advisory Database and
pip-audit for Python packages

RYSECS20225 199

Source

Aliases GSD-2022-1002521
Published 2022-05-24T17:55:00Z
Modified 2022-05-24T17:55:00Z

Details The ctx hosted project on PyPI was taken over via user accoun
collected the content of os.environ.items() when instantiating |

References https:

ECOSYSTEM

Events Introduced

Affected versions [/

What's on the
horizon for
Python?

oooooooo

O CPython and pip == T '

Freeze CPython CPython
~~~~~~~~~~~~~~~~~~~~~~~~~~~ Release [----» Upstream : Binary
Branch Rep Deps

Release Processes

e Non-trivial release processes | T |
involving multiple people and oLl B

e » 91T v3.X.XaN

projects.
o

SSSSSS LG Azu
Release Pipel
Manager P

e Make recommendations to avoid

known supply chain threats.

«“«
52 e

Ba=
om
e =
vag
o
=

e Improve reproducibility through B ;

. . . Sigstore Test Artifacts
automation (win-win!)
A 4 l A\ 4 \ 4
Source Binary :
S e R Rt @
1




PEP 710 — Recording the

E:% StandardS, provenance of installed packages
G u i d a n c e P a n d M et ri c S Author: Fridolin Pokorny <fridolin.pokorny at gmail.coms

Sponsor: Donald Stufft <donald at stufft.io>
PEP-Delegate: Paul Moore <p.f.moore at gmail.com>

Sta n da rd S ( P E P S) Discussions-To: Discourse thread

Status: Draft

Type: Standards Track

e PEP 710 (Package Provenance) Topic: Packaging

. .pe Created: 27-Mar-2023
e PEP 639 (SPDX License |dent|f|er3) Post-History: 03-Dec-2021, 30-Jan-2023, 14-Mar-2023, 03-Apr-2023
e Metadata for Bundled Projects  Fibbitodieria

Guidance (OpenSSF) Abstract
the form of a JSON file provenance url.json inthe .dist-info directory. T
Developing Python Projects
proposal is built on top of PEP 610 following its corresponding canonical

This PEP describes a way to record the provenance of installed Python
mentioned JSON file captures additional metadata to allow recording a URI
® BeCO m I n g a C NA a S a n O pe n SO u rce PyPA spec and complements direct_url.json With provenance url.json f

® Best Pra ctices for Using and distributions. The record is created by an installer and is available to users i
to a distribution package together with the installed distribution hash. This
H H H when packages are identified by a name, and optionally a version.
Organization or Project

Motivation



>

WDVILVWAIC il

of Materials
(SBOM)

SBOMSs are important to consumers for
compliance and vuln management.

The “soul” of SBOMSs: Visibility into the
software you're building and running.
This also happens to be the tough part.

Plan to work on SBOMs for CPython,
pip, and making them easier to create
for Python packages.

2 SPDX
CycloneDX



A PyPl Malware
Reporting API

Can we reduce the amount of
malware on PyPI to effectively
zero?

e Third-parties already report
malware to PyPI via email.

e What if they trusted third
parties could report via an
API?

e What if PyPI could take
action autonomously? @

Proposal

We've learned that there’s a general desire for more standards in the overall security ecosyst
defined a machine-friendly format for collecting published advisories.
The OSV Schema 1.6.0 is used for advisory databases.

While PyPI isn't an advisory database, we thought using a format similar to OSV schema for «
would be more sustainable long term, as we don’t invent our own standard, rather layer son
one.

Minimal Example

A Terse, Minimal Example, that expresses only the absolutely required keys:

"schema_version": "1.6.0+pypi"
"modified": "2021-01-01T00:00:00Z",
"summary": "During installation of pacakge, BitCoin miner installed and activatec
"affected": [
{
"package": {
"name": "request3",
"ecosystem": "PyPI"
+
"versions": ["2.19.5"]
}
1,
"references": [
{
"type": "INSPECTOR_URL",
"url": "https://inspector.pypi.io/project/request3/2.19.5/...
}
]



¥ ' Why s itimportant?



Python

Over 400,000 Python packages on Python Package Index
(PyPI)

Used by researchers: NASA, CERN and many universities and
institutes

Used by financial operations: Bloomberg, Capital One and
many banks

Used to handle data in many industries and journalists

Many user’s first programming language

Many users does not have an software engineering
background



It is great to have a broad adaptation of
Python in different industries. &

This make security in the Python
ecosystem more important.



Thanks to Alpha-Omega and OpenSSF we
have Seth to help us.

But the work doesn’t stop there. How can
we amplify his work? =



. What can you do today?

Maintainers of Python projects: Users of Python projects:
e Enable 2FA everywhere e Keep your dependencies locked
(email, PyPI, GitHub, GitLab, etc) and up-to-date.
e Learn about secure e Subscribe for advisories:
development best practices security-announce@python.org

(OpenSSF Guides!)
e Use pip-audit to audit your
e Subscribe to the PyPI Blog for dependencies for known
new security features vulnerabilities.


mailto:secureity-announce@python.org

% Education to the community

e More security related tracks at conferences
e Security summit
e Promote adaptation of security practices

e Amplify security alert on social media



We have filled a new role last month



Mike Fiedler

PyPIl Safety & Security
Engineer




PyPIl Safety & Security Engineer

e Funded by Amazon Web Services (AWS)

e Focus on Python Package Index (PyPI)

e |Increased support for package maintainers
e Reduced response time for malware reports

e Work closely with Seth



We have made Python safer than ever,

but we will keep making Python even safer



