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Intercomparison and Accuracy Assessment Report  
 
 
 
 
Background 
 

A detailed intercomparison and accuracy assessment of the satellite-based ET models 
included in the OpenET ensemble is important so that agricultural producers and water 
managers understand model accuracy and limitations at field to basin scales. OpenET has 
conducted the largest satellite-based field-scale ET model intercomparison and accuracy 
assessments to date within the ET modeling community. To date, the assessment has focused 
on comparing satellite-based ET estimates to “in-situ” or ground-based ET estimates derived 
primarily from eddy covariance stations (142 stations with a minimum of 6 daily ET values and 
120 stations with a minimum of three complete months of ET data). These sites are located 
within a variety of land uses and vegetation types across the continental U.S. and are operated 
and maintained by AmeriFlux, USGS, USDA, and university partners (Figure 1). In addition, the 
accuracy assessment included six Bowen ratio stations from shrubland sites in Nevada, and 
four precision weighing lysimeter datasets from cropland sites in Bushland, TX. Ongoing and 
future efforts will focus on intercomparisons using additional precision weighing lysimeters, 
publicly available state agency and grower groundwater pumping records, and watershed scale 
water balance estimates of ET. While this accuracy and intercomparison effort is an important 
step for OpenET, given that the models are being applied across a broad range of geographies 
and land cover types, it is worth noting that many of the models included in OpenET have been 
extensively assessed at local to global scales in prior studies.  
 
 

 
 
Figure 1. Map of flux tower locations included in the OpenET intercomparison and accuracy 
assessment.  

https://ameriflux.lbl.gov/
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Eddy Covariance Stations 
 

Eddy covariance stations measure many micrometeorological variables to estimate 
exchanges of carbon dioxide, water vapor, and energy between the land surface and the 
atmosphere. Nearly all stations included in the OpenET Accuracy Assessment and 
Intercomparison study were instrumented with open path eddy covariance instrumentation 
systems (Baldocchi, 2014). While the exact instrumentation varies by site, all sites include a 
four-way net radiometer to measure net radiation, an infrared gas analyzer and 3D sonic 
anemometer to measure latent and sensible heat fluxes, and heat flux plates and soil 
thermocouple probes to measure ground heat fluxes. These radiation and heat fluxes are 
ultimately used to estimate ET. Additional information about the typical instrumentation 
deployed at the Ameriflux sites and estimation of ET using eddy covariance data is available in 
Baldocchi et al. (2001) and Foken (2008a).  

Eddy covariance stations are important because they provide ground-based ET datasets 
that represent best available science, and that have specific locations with known spatial 
footprints, land use, and vegetation types. Eddy covariance station datasets were extensively 
assessed using a range of quality assurance and quality control and post-processing 
procedures. This included rigorous visual and automated screening and processing to identify 
outliers, fill gaps in the instrument measurement record, perform energy balance closure 
corrections and review of eddy covariance data following data processing procedures 
established by the FLUXNET organization (Pastorello et al., 2017; Pastorello et al., 2020), 
guidelines of Allen et al. (2011a,b), and using open source software developed by the OpenET 
team (Volk et al., 2021). Energy imbalance has been a significant topic of research and 
discussion among the micrometeorological community (Foken 2008b,  Leuning et al., 2012). 
Energy imbalance, where available energy (i.e. net radiation minus ground heat flux) is larger 
than the sum of turbulent fluxes (i.e. sensible plus latent heat flux), commonly ranges between 
10 to 30 percent (Foken, 2008a). There are many reasons for energy imbalance, but the most 
obvious is the disparity in measurement height and horizontal scales (i.e., footprint) between 
available energy and turbulent flux sensors. While measurement errors clearly contribute to 
energy imbalance they alone cannot solve the closure problem, nor can the many processing 
steps and corrections required to solve the closure problem. Other sources of imbalance are 
flux divergence due to terrain and vegetation heterogeneities, interaction of scales, and low-
frequency mesoscale eddies not being captured by the instrumentation (Foken, 2008b). Energy 
imbalance corrections are commonly applied by researchers and practitioners even though 
sources of errors or the energy balance terms in question are not fully understood. Typically, 
turbulent fluxes are targeted through increasing latent heat flux (LE) and sensible heat flux (H) 
according to the Bowen ratio (Twine et al., 2000), or energy balance ratio (EBR) (Pastorello et 
al., 2020) as was done in this work.  

Eddy covariance station location attributes were visually reviewed using aerial imagery, 
Landsat Normalized Difference Vegetation Index (NDVI) and wind speed and direction station 
data to ensure that the station location is representative of surrounding vegetation and land 
surface characteristics. Daily and monthly dynamic flux footprint and fetch areas for spatial 
sampling and intercomparison of satellite and ground-based ET datasets were developed using 
a two-dimensional Flux Footprint Prediction system (Kljun et al., 2015). To emphasize the flux 
footprint predictions during times of relatively higher evaporative demand, footprints were 
weighted by hourly grass reference ET using gridded weather data from NLDAS (Xia et al., 
2012). Dynamic footprint areas were used to spatially sample both individual model and 
ensemble average ET estimates. Of the 144 eddy covariance stations included in the 
intercomparison, 69 stations had the necessary micrometeorological data to compute dynamic 
footprint areas. For most of the remaining stations, static seven by seven pixel footprints (210m 
by 210m) were manually selected based on wind rose diagrams (75 stations). For the remaining 

https://fluxnet.org/data/fluxnet2015-dataset/data-processing/
https://fluxnet.fluxdata.org/
https://www.geosci-model-dev.net/8/3695/2015/gmd-8-3695-2015.pdf
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six stations where the selection of seven by seven pixel footprints was not feasible due to rapid 
changes in land cover at the edge of the footprints, static five by five footprints (150m by 150m) 
were selected.   

In addition to daily, monthly, and annual ET data, total growing season ET was 
computed at each ground-based ET station and compared with satellite-based ET estimates. 
Growing season ET, particularly in agricultural settings, is of high importance due to the 
combination of high evaporative demand in the atmosphere and high water availability near the 
land surface. We used gridMET climate data (Abatzoglou, 2013) from 1980-2020 to define the 
mean annual start and end dates of the growing season at each ground-based ET station using 
a 300 °C cumulative degree days from January 1 to define the start date, and the first -2 °C 
killing frost to determine the end date similar to Huntington et al. (2016) and Allen et al. (2020). 
Degree days were calculated using daily average temperatures, and minimum daily 
temperatures were used for defining the killing frost dates using gridMET data. Monthly ET data 
were used to sum annual growing season totals by rounding growing season start and end 
dates to the nearest month, and only years without any monthly gaps for the full growing season 
were used. 
 
OpenET Model and Eddy Covariance Station Intercomparison and Accuracy Assessment 
 

The OpenET model intercomparison and accuracy assessment was conducted in two 
phases. For Phase I, daily and monthly ET data from each model and the ensemble average 
were spatially sampled over static footprints for a subset of eddy covariance stations that were 
randomly selected for different land cover classes, resulting in selection of 78 stations across 
the U.S. All models were run in a fully automated mode and the station data were not shared 
with the modeling teams until the comparisons were complete. For many of the models, it was 
the first time they had been run on a cloud-based platform in a fully automated framework over 
a geographic region the size of the western U.S. As such, results from Phase I were used by the 
modeling teams to evaluate model performance and make improvements to account for errors 
in the model implementation, address issues related to interoperability of gridded datasets, and 
address systematic errors for regions, seasons, or specific land cover types. During this time, 
modeling teams updated their models to use new Landsat Collection 2 at-surface reflectance 
and surface temperature data. Final model changes and updates were committed to respective 
model code repositories, and models were run to produce ET data for the Phase II 
intercomparison and accuracy assessment, which included all Phase I sites, with an additional 
66 stations for a total of 144 flux stations plus four weighing lysimeter data records. For Phase 
II, daily and monthly ET data for each model and the ensemble average were spatially sampled 
using dynamic station footprints where they could be computed, and static station footprints for 
stations where micrometeorological data inputs required for computation of dynamic footprints 
were not available. Results from Phase II were shared with modeling teams; however, no further 
modifications or changes to models were made after Phase II results were shared. For Phase II 
intercomparison statistics, data were limited to stations with a minimum of 3 paired monthly data 
points and 6 paired daily data points. This requirement was imposed to limit the ability of sites 
with short data records to misrepresent the grouped statistics and resulted in 122 flux stations 
sites used in the monthly statistics and 142 flux stations in the daily. All four precision weighing 
lysimeter sites also met these thresholds and were included in the daily and monthly analyses. 
Growing season and annual ET statistical comparisons included all stations with 1 or more 
seasons with no monthly gaps. 

Overall intercomparison and accuracy assessment results for all Phase I and Phase II 
sites (using dynamic and static footprints where dynamic wasn’t available) are summarized in 
Table 1 for water year data for croplands, Table 2 for growing season data, in Table 3 for 
monthly data, and in Table 4 for daily data for all land covers. Results are shown for the 
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OpenET ensemble average with outliers dropped using the Median Absolute Deviation (MAD) 
approach (Hampel, 1974; Leys et al., 2013), as well as the range across the ensemble of 
OpenET models. Key metrics summarized in Tables 1-4 include the slope of the best fit line 
through the origin, the mean bias error (MBE), the mean absolute error (MAE) and the root 
mean squared error (RMSE) in mm/month or mm/day, and the coefficient of determination (r2) 
between OpenET and closed energy balance eddy covariance station ET data. The r2 values 
were calculated as the square of the Pearson’s product-moment correlation coefficient. 
Acknowledging its limitations as a measure of goodness of fit for model evaluation (Legates and 
McCabe, 1999), we include r2 as an easily interpreted indicator of the proportion of total 
variance in the eddy covariance station data that can be explained by the OpenET models.  

To calculate the overall summary statistics in Tables 1-4 for slope, MBE, MAE and 
RMSE, we calculated a weighted mean value for each statistic from the ground-based ET 

stations using the square roots of sample size (√n) of each site following Obrecht (2019). This 
weighting was applied to reduce the greater influence of sites that had longer periods of record, 
and to ensure that model performance at all sites contributed to the overall result summaries. 
Since a weighted mean of r2 values is difficult to interpret, we calculated the overall r2 value by 
pooling data from all sites and then calculating the r2 value from the pooled data.  
 
Table 1. Overall summary of water year intercomparison and accuracy assessment metrics for 
Phase II results. 
 

 
 
The results summarized in Table 2 generally show strong overall agreement with 

ground-based station and lysimeter ET for the ensemble average and most models, especially 
for the cropland stations. The slopes of the best fit lines through the origin for croplands range 
from 0.88 - 1.13, with a slope of 1.00 for the ensemble average. The cropland MAE value for the 
ensemble average is 80.25 mm/season, which is equivalent to an average error of 13.2%. 
Cropland results for individual models range from 91.18 - 111.80 mm/season, which is 
equivalent to 15.0 - 18.4%. RMSE values for croplands, which are more strongly influenced by 
outlier values from each model, are 92.72 mm/season for the ensemble average and range from 
108.70 - 134.31 mm/season. r2 values for croplands show good correlation with the station ET 
data for all models, and range from 0.86 - 0.92 for the individual models, with a value of 0.93 for 
the ensemble average. These summary statistics indicate low bias errors overall, strong 
correlation with the eddy covariance station ET, and accuracies that are within 91.18 - 111.80 
mm/season of the station ET data at the growing season timestep.  

The monthly results summarized in Table 3 also show strong overall agreement with 
ground-based station ET for the ensemble average and most models. The slopes of the best fit 
lines through the origin for croplands range from 0.86 - 1.04, with a slope of 0.95 for the 
ensemble average. The cropland MAE value for the ensemble average is 15.55 mm/month, 
which is equivalent to an average error of 16.6%. Cropland results for individual models range 
from 17.96 - 22.92 mm/month, which is equivalent to 19.2 - 24.5%. RMSE values for croplands 
are 19.97  mm/month (equivalent to 0.67 mm/day) for the ensemble average and range from  
 

Land cover type Statistic Ensemble Range

Croplands Slope 0.93 0.81-1.03

14 sites MBE (mm) -71.61 (-7.0%) -197.42-4.9 (-19.3-0.5%)

N = 48 w ater years MAE (mm) 91.34 (8.9%) 88.91 - 199.41 (8.7 - 19.5%)

Mean station ET = 1024 (mm) RMSE (mm) 100.48 (9.8%) 96.32 - 208.73 (9.4 - 20.4%)

R-squared 0.98 0.93 - 0.97
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Table 2. Overall summary of growing season intercomparison and accuracy assessment 
metrics for Phase II results. 
 

 
 
 
23.43 - 28.72 mm/month (equivalent to 0.78 - 0.96 mm/day). r2 values for croplands show strong 
correlation with the station ET data for all models, and range from 0.89 - 0.93 for the individual 
models, with a value of 0.95 for the ensemble average. These summary statistics indicate low 
bias errors overall, strong correlation with the eddy covariance station ET, and accuracies that 
are within 17.96 - 22.92 mm/month (equivalent to average of 0.60 to 0.76 mm/day) of the station 
ET data at a monthly timestep.  
 
 
 

Land cover type Statistic Ensemble Range

Croplands Slope 1 0.88 - 1.13

38 sites MBE (mm) -10.1 (-1.7%) -78.61 - 47.37 (-12.9 - 7.8%)

N = 151 grow ing seasons MAE (mm) 80.25 (13.2%) 91.18 - 111.8 (15.0 - 18.4%)

Mean station ET = 609 (mm) RMSE (mm) 92.72 (15.2%) 108.7 - 134.31 (17.8 - 22.1%)

R-squared 0.93 0.86 - 0.92

Evergreen Forests Slope 1.24 1.0 - 1.35

14 sites MBE (mm) 70.72 (24.7%) -1.2 - 109.26 (-0.4 - 38.2%)

N = 87 grow ing seasons MAE (mm) 92.09 (32.2%) 81.2 - 127.31 (28.4 - 44.5%)

Mean station ET = 286 (mm) RMSE (mm) 108.91 (38.1%) 100.79 - 146.53 (35.2 - 51.2%)

R-squared 0.89 0.82 - 0.9

Grasslands Slope 1.18 0.86 - 1.44

19 sites MBE (mm) 3.9 (1.8%) -53.81 - 54.78 (-25.0 - 25.5%)

N = 79 grow ing seasons MAE (mm) 83.08 (38.6%) 81.63 - 125.85 (38.0 - 58.5%)

Mean station ET = 215 (mm) RMSE (mm) 92.05 (42.8%) 91.21 - 138.37 (42.4 - 64.4%)

R-squared 0.8 0.53 - 0.81

Mixed Forests Slope 1.18 0.96 - 1.34

10 sites MBE (mm) 57.0 (21.8%) 27.8 - 82.92 (10.7 - 31.8%)

N = 38 grow ing seasons MAE (mm) 60.21 (23.1%) 46.67 - 86.31 (17.9 - 33.1%)

Mean station ET = 261 (mm) RMSE (mm) 69.73 (26.7%) 54.99 - 95.14 (21.1 - 36.5%)

R-squared 0.97 0.92 - 0.98

Shrublands Slope 1.06 0.71 - 1.44

21 sites MBE (mm) 6.79 (3.9%) -50.14 - 61.21 (-29.2 - 35.6%)

N = 75 grow ing seasons MAE (mm) 70.82 (41.2%) 67.14 - 94.0 (39.0 - 54.7%)

Mean station ET = 172 (mm) RMSE (mm) 79.21 (46.1%) 74.95 - 107.82 (43.6 - 62.7%)

R-squared 0.56 0.3 - 0.75

Wetlands Slope 1.18 1.02 - 1.37

7 sites MBE (mm) 49.65 (8.3%) 5.24 - 113.37 (0.9 - 19.0%)

N = 32 grow ing seasons MAE (mm) 210.18 (35.1%) 189.0 - 266.61 (31.6 - 44.6%)

Mean station ET = 598 (mm) RMSE (mm) 262.23 (43.9%) 233.19 - 313.09 (39.0 - 52.4%)

R-squared 0.71 0.59 - 0.75
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Table 3. Overall summary of monthly intercomparison and accuracy assessment metrics for 
Phase II results. 

 

 
 
Results for the daily data are summarized in Table 4 and are similar to the monthly 

results. The slopes of the best fit lines for croplands range from 0.81 - 0.94 for individual 
models, with a slope of 0.88 for the ensemble average. MAE values range from 0.91 - 1.14 
mm/day for individual models, with a value of 0.83 for the ensemble average. RMSE values for 
croplands range from 1.21 - 1.46 mm/day for individual models, with a value of 1.08 mm/day for 
the ensemble mean. r2 values also show good correlation with the station ET for all models, and 
range from 0.68 - 0.77 for individual models, with a value of 0.81 for the ensemble mean. As 
expected with linear interpolation of the fraction of reference ET between image dates, MAE and 
RMSE values increase slightly at a daily timestep, the r2 values decrease slightly, and the 
slopes of the best-fit lines move away from the 1:1 line. However, taken together, these  

Land cover type Statistic Ensemble Range

Croplands Slope 0.95 0.86 - 1.04

45 sites MBE (mm) -3.64 (-3.9%) -13.77 - 5.16 (-14.7 - 5.5%)

N = 1682 months MAE (mm) 15.55 (16.6%) 17.96 - 22.92 (19.2 - 24.5%)

Mean station ET = 93.68 (mm) RMSE (mm) 19.97 (21.3%) 23.43 - 28.72 (25.0 - 30.7%)

R-squared 0.95 0.89 - 0.93

Evergreen Forests Slope 1.19 1.06 - 1.32

14 sites MBE (mm) 14.16 (23.2%) 7.07 - 21.11 (11.6 - 34.6%)

N = 783 months MAE (mm) 23.79 (39.0%) 24.67 - 31.43 (40.4 - 51.5%)

Mean station ET = 61.02 (mm) RMSE (mm) 28.62 (46.9%) 30.0 - 37.91 (49.2 - 62.1%)

R-squared 0.79 0.71 - 0.78

Grasslands Slope 1.03 0.73 - 1.28

20 sites MBE (mm) -1.23 (-2.9%) -11.88 - 9.73 (-27.9 - 22.9%)

N = 672 months MAE (mm) 19.19 (45.1%) 20.17 - 28.1 (47.4 - 66.0%)

Mean station ET = 42.56 (mm) RMSE (mm) 24.12 (56.7%) 24.62 - 35.96 (57.8 - 84.5%)

R-squared 0.75 0.54 - 0.8

Mixed Forests Slope 1.16 0.99 - 1.29

10 sites MBE (mm) 19.14 (31.4%) 8.34 - 27.06 (13.7 - 44.3%)

N = 255 months MAE (mm) 21.54 (35.3%) 19.51 - 30.3 (32.0 - 49.7%)

Mean station ET = 61.02 (mm) RMSE (mm) 26.8 (43.9%) 24.44 - 36.35 (40.1 - 59.6%)

R-squared 0.88 0.8 - 0.88

Shrublands Slope 0.95 0.65 - 1.34

24 sites MBE (mm) 2.89 (9.3%) -5.2 - 12.87 (-16.7 - 41.4%)

N = 681 months MAE (mm) 15.68 (50.5%) 17.45 - 22.64 (56.2 - 72.9%)

Mean station ET = 31.07 (mm) RMSE (mm) 19.96 (64.2%) 20.9 - 29.18 (67.3 - 93.9%)

R-squared 0.66 0.3 - 0.69

Wetlands Slope 1.14 1.0 - 1.25

7 sites MBE (mm) 14.36 (16.4%) 6.71 - 25.5 (7.7 - 29.1%)

N = 269 months MAE (mm) 28.94 (33.0%) 29.93 - 36.19 (34.2 - 41.3%)

Mean station ET = 87.57 (mm) RMSE (mm) 35.24 (40.2%) 36.33 - 44.0 (41.5 - 50.2%)

R-squared 0.82 0.72 - 0.81
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Table 4. Overall summary of daily intercomparison and accuracy assessment metrics for Phase 
II results.  
 

 
 
summary statistics indicate relatively low bias errors overall, and strong correlation with station 
ET at daily, monthly, and seasonal timesteps. 

Overall, the OpenET ensemble average performs as well or better than any individual 
model across nearly all metrics, and generally has the lowest MAE and RMSE values and the 
highest r2 across all land cover classes, and at daily, monthly, and seasonal timesteps. The 
MAE for the mean of the model ensemble as a percent of the monthly n-weighted station ET 
ranges between 50.5% and 16.6%, with croplands being 16.6% at a monthly timestep. The 
MAE for daily timesteps ranges between 22.8% and 55.7% with croplands being 22.8%. For 
reference, members of the OpenET user working groups specified an error of ± 10-20% as the 
accuracy target for ET data at a monthly timestep, and ± 15-25% as the accuracy target for daily 
ET data.  

Land cover type Statistic Ensemble Range

Croplands Slope 0.88 0.81 - 0.94

49 sites MBE (mm) -0.27 (-7.4%) -0.61 - 0.04 (-16.8 - 1.1%)

N = 4913 days MAE (mm) 0.83 (22.8%) 0.91 - 1.14 (25.0 - 31.3%)

Mean station ET = 3.64 (mm) RMSE (mm) 1.08 (29.7%) 1.21 - 1.46 (33.2 - 40.1%)

R-squared 0.81 0.68 - 0.77

Evergreen Forests Slope 1.16 0.98 - 1.29

17 sites MBE (mm) 0.64 (27.4%) 0.17 - 0.91 (7.3 - 38.9%)

N = 1757 days MAE (mm) 1.0 (42.7%) 1.02 - 1.35 (43.6 - 57.7%)

Mean station ET = 2.34 (mm) RMSE (mm) 1.24 (53.0%) 1.21 - 1.64 (51.7 - 70.1%)

R-squared 0.55 0.41 - 0.52

Grasslands Slope 0.9 0.72 - 1.09

28 sites MBE (mm) -0.11 (-6.0%) -0.38 - 0.28 (-20.7 - 15.2%)

N = 3938 days MAE (mm) 0.83 (45.1%) 0.8 - 1.24 (43.5 - 67.4%)

Mean station ET = 1.84 (mm) RMSE (mm) 1.08 (58.7%) 1.0 - 1.62 (54.3 - 88.0%)

R-squared 0.54 0.21 - 0.58

Mixed Forests Slope 1.07 0.88 - 1.19

14 sites MBE (mm) 0.59 (26.0%) 0.01 - 0.9 (0.4 - 39.6%)

N = 1241 days MAE (mm) 0.9 (39.6%) 0.87 - 1.28 (38.3 - 56.4%)

Mean station ET = 2.27 (mm) RMSE (mm) 1.16 (51.1%) 1.16 - 1.62 (51.1 - 71.4%)

R-squared 0.75 0.54 - 0.76

Shrublands Slope 0.8 0.59 - 1.1

26 sites MBE (mm) 0.01 (0.9%) -0.24 - 0.36 (-20.9 - 31.3%)

N = 3223 days MAE (mm) 0.64 (55.7%) 0.67 - 1.01 (58.3 - 87.8%)

Mean station ET = 1.15 (mm) RMSE (mm) 0.84 (73.0%) 0.83 - 1.32 (72.2 - 114.8%)

R-squared 0.49 0.31 - 0.49

Wetlands Slope 1.07 0.99 - 1.16

8 sites MBE (mm) 0.42 (13.2%) 0.15 - 0.81 (4.7 - 25.6%)

N = 931 days MAE (mm) 1.1 (34.7%) 1.18 - 1.34 (37.2 - 42.3%)

Mean station ET = 3.17 (mm) RMSE (mm) 1.34 (42.3%) 1.45 - 1.68 (45.7 - 53.0%)

R-squared 0.71 0.54 - 0.64
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Strength of the Ensemble Approach, and Next Steps 
 

It is noteworthy that MAE and RMSE values for the OpenET ensemble average are 
lowest, or at the low end of the range of values from the individual models. One reason for the 
strong overall performance of the model ensemble is that individual models may occasionally 
“miss”, and provide estimates that differ substantially from the station ET or other reference 
dataset. This can be due to data quality issues in input data or physical conditions that depart 
from the model assumptions. However, since the ensemble value is currently calculated as the 
average of all or a subset of models with outliers removed according to the MAD approach, and 
due to very different designs of the models, errors from any one model are dampened in the 
ensemble average, resulting in fewer large “misses” and lower MAE and RMSE values for the 
ensemble average.  

In considering these results, however, it is important to note that most cropland sites 
were located in expansive regions with well-watered crops. In these regions, (including most of 
California’s Central Valley and Delta, and most agricultural regions in the Midwest), the 
ensemble value appears to provide the most reliable and stable estimate of ET. However, when 
looking at the limited number of cropland flux stations located in arid environments, there is 
evidence that some models have a relatively consistent low bias for smaller agricultural areas 
surrounded by dry lands. In these areas, the MAD outlier filtering approach does not filter 
outliers as desired due to the large range in the ensemble ET values relative to the ensemble 
median, resulting in a low bias in the ensemble average ET value. Over the coming months, the 
team will continue to make improvements to the ensemble of models in these more challenging 
settings.  

The results from the OpenET intercomparison and accuracy assessment highlight the 
value of using an ensemble of models to detect and remove outliers and facilitate calculation of 
a single ensemble value that, in many cases, has a higher accuracy than any individual model 
within the ensemble. They also highlight the ability to easily compare model results at scale, 
which has increased transparency, accelerated the ability of the ET modeling community to 
identify and understand differences across the ensemble, and to identify and minimize errors 
and biases in the ensemble as it evolves over time. 

Participation of a sizable community of scientists working collaboratively has been 
essential to the success and lessons learned in this first intercomparison effort, and will continue 
to be important for rapidly advancing the science and improving the ensemble across all 
settings and land cover types over the coming year. As the ensemble calculation evolves, 
additional comparisons will be conducted and this report will be updated, along with our Best 
Practices Manual.  
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