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ABSTRACT

This paper compares a number of probabilistic weather forecasting verification approaches. Forecasting skill
scores from linear error in probability space and relative operating characteristics are compared with results
from an alternative approach that first transforms probabilistic forecasts to yes/no form and then assesses the
model forecasting skill. This approach requires a certain departure between the categorical probability from
forecast models and its random expectation. The classical contingency table is revised to reflect the ‘‘nonappli-
cable’’ forecasts in the skill assessment.

The authors present a verification of an Australian seasonal rainfall forecast model hindcasts for the winter
and summer seasons over the period from 1900 to 1995. Overall skill scores from different approaches dem-
onstrate similar features. However there are advantages and disadvantages in each of those approaches. Using
more than one skill assessment scheme is necessary and is also of practical value in the evaluation of the model
forecasts and their applications.

1. Introduction

Seasonal forecasts of climate variables such as rainfall
and temperature are often presented as a probability of
occurring within a certain category such as above or
below average (two categories), or above, near, and be-
low average (three-category tercile forecasts). The prob-
ability of occurrence in each forecast category is usually
expressed as a percentage probability figure with the
total probability in all categories adding to 100%. A
significant shift of the probability away from its average
is indicated by corresponding changes in the probabil-
ities in other categories.

The ostensible reason for providing a probability val-
ue is because probabilistic forecasts have the advantage
that they can convey the uncertainty associated with the
forecasts in a quantitative way (Murphy 1977). How-
ever, any probability exceeding the average could be
interpreted as meaning an event is likely to occur, when
in fact a discrete amount of departure may need to be
achieved between the forecast probability and the mean
expectation value before any confidence can be attached
to the forecast. It has been acknowledged that users of
climate information will generally not alter their prac-
tices unless there is a significant shift in probabilities
away from normal conditions (Hammer et al. 1996).

Basically, there are two ways of scoring probabilistic
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forecasts. One is to use some measure of the departure
between forecasts and observations and the other is to
do a conversion from the probabilistic form to a binary
yes/no form to use a contingency table to score bit rates
against misses and false alarm rates. Many skill scoring
schemes have been developed and used in the verifi-
cation of probabilistic forecasts in meteorology and
comprehensive reviews appear in the literature (e.g.,
Bettge et al. 1981; Doswell and Flueck 1989; Wilks
1995). Generally, most scoring methods can be cate-
gorized as follows:

1) those that directly measure the departures of the fore-
casts from the actual observations, such as the root-
mean-square error (rmse) or Brier scores (e.g., Stan-
ski et al. 1989);

2) those that measure the departure between forecasts
and observations in cumulative probability space
such as the ranked probability score, or the linear
error in probability space (LEPS) score (Ward and
Folland 1991; Potts et al. 1996);

3) relative operating characteristics (ROC), which are
based on signal detection theory and attempt to mea-
sure the relative ‘‘signal’’ and ‘‘noise’’ ratios con-
tained in forecast information in the form of hits to
misses ratios when measured against performance
level (Egan 1975; Mason 1982); and

4) evaluation scores based on converting probability
forecasts to binary (yes/no) forecasts and the gen-
eration of a contingency table from the hit and miss
rates (Mason 1979; Gandin and Murphy 1992).

In this paper we present the comparative results of
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TABLE 1. Classical 2 3 2 contingency table structure.

Forecast: yes Forecast: no

Observation: yes
Observation: no

A
C

B
D

TABLE 2. A 3 3 2 contingency table for converting probabilistic
forecasts to binary yes/no and nonapplicable forecasts. Nonapplicable
forecasts are defined as in the text.

Forecast: yes Forecast: no
Nonapplicable

forecast

Observation: yes
Observation: no

A
C

B
D

X
Y

applying a number of these different skill scores to a
set of Australian seasonal rainfall hindcasts. In the next
section we discuss a method of using probability thresh-
olds to transform probabilistic forecasts to yes, no, and
nonapplicable forecasts, and then assess the forecasting
skill based on a revised contingency table. Section 3
presents the application of LEPS, ROC, and revised true
skill statistic (TSS) scores to tercile categorical fore-
casts. In section 4 we present a comparative assessment
of the scoring methods and an ensemble experiment to
assess the statistical significance of some of the scoring
schemes. Results are discussed in section 5.

2. Assessing probabilistic forecasts with
contingency table

An important point in regard to the construction of
contingency tables for skill scoring of probabilistic fore-
casts is the determination of threshold values to differ-
entiate between yes and no binary scores. Forecasting
skill then derived from the contingency table is of prac-
tical value in the sense that users of a forecast often
have to make a yes/no decision to act on the information
provided. As aforementioned, users generally would not
alter their practices unless there is a significant shift in
probabilities away from random expectation (Hammer
et al. 1996). Therefore it is of help if we assess the
model forecasting skill by classifying probability fore-
casts to yes/no, and nonapplicable forecasts with a cer-
tain amount of probability departure from its random
expectation. For m-categorical forecasts in which the
random expectation of the occurrence of each category
is 1/m, one can use a range of probability departures in
the skill assessment. Here we define (1/m)/m as a sig-
nificant departure. For tercile categorical forecasts, it is
about 0.33/3 5 11.1%. If the forecasted probability val-
ue is equal or greater than 1/m 1 1/m2, then we classify
this forecast as a yes forecast as there is a significant
shift in probability space that such an event is more
likely to occur. If the forecasted probability value is less
than 1/m 2 1/m2, then we classify the forecast as a no
forecast as there is a significant shift in probability space
that such an event is less likely to occur. If the forecasted
probability value is between 1/m 2 1/m2 and 1/m 1
1/m2, then we classify the forecast as a nonapplicable
forecast as there is no significant shift in probability
space and the chance for the occurrence of each category
is equal. Such a forecast is of very limited value in the
users’ decision-making and we therefore classify such
a forecast as a nonapplicable forecast. The implication
of choosing such an arbitrary threshold in the transfor-

mation of probabilistic forecasts and the skill assessment
will be discussed later in the paper. A different approach
will be introduced to compensate this drawback.

A range of skill score measurements has been de-
veloped for the verification of binary forecasts (see
Wilks 1995 for a review). Most of these skill scores are
based upon a 2 3 2 contingency table that is constructed
as shown in Table 1. The skill score is expressed as
some ratio of the hits and misses with respect to the
possible totals. Among these, the Heidke (1926) and
TSS scores (Hanssen and Kuipers 1965) are commonly
used in forecast verification. Compressing the infor-
mation contained in the A, B, C, and D components in
Table 1 into a single value inevitably loses some of the
information contained in the contingency table (Wood-
cock 1976; Schaefer 1990), and introduces some defi-
ciencies in the skill measurement. Woodcock (1976)
showed that with the exception of the TSS, most skill
measurement scores are affected by the mixture of
events and nonevents in the trial. The TSS score gives
the best estimates on an ‘‘unequal’’ trial basis because
it is proportional to the frequency of events being fore-
cast and gives equal emphasis to the ability to forecast
events and nonevents.

After transforming categorical probabilistic forecasts
to yes, no, and nonapplicable forecasts, we need to con-
struct a 3 3 2 contingency table as shown in Table 2
to reflect the nonapplicable component in the contin-
gency table.

The TSS score from this contingency table can then
be written as

N 2 Ncm ccmTSS 5 ,
N 2 Nall cco

with Nall 5 A 1 B 1 C 1 D 1 X 1 Y, Pyes 5 (A 1 B
1 X)/Nall , Pno 5 (C 1 D 1 Y)/Nall , Ncm 5 A 1 D, Nccm

5 (A 1 C) · Pyes 1 (B 1 D) · Pno, and Ncco 5 (A 1 B
1 X) · Pyes 1 (C 1 D 1 Y) · Pno, where A, B, C, D, X,
Y are the components in Table 2 summated over all
categories.

Here, Pyes and Pno are the climatological probabilities
(or random expectation) of the occurrence of yes and
no events; Ncm is the number of correct forecasts from
the forecast model; Nccm is the number of correct fore-
casts that could be achieved by chance; Ncco is the num-
ber of observed events that can be correctly forecasted
by chance; and Nall is the total number of observations.
Therefore, Ncm 2 Nccm represents the number of correct
forecasts after subtracting those achieved by chance;
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FIG. 1. Revised TSS score for the model hindcasts of Australian winter rainfall from 1900 to 1995: (a) with no probability departure, (b)
with 5.5% probability departure, (c) with 11.1% probability departure, and (d) with 16.6% probability departure.

hence, it reflects the real model forecasting skill. In
addition, Nall 2 Ncco is the number of correct forecasts
from a perfect model obtained by taking away the ob-
served events that can be correctly forecasted by chance.

Figure 1 shows the revised TSS scores for a set of
Australian winter (July–August–September) rainfall
hindcasts in tercile categories produced using a Southern
Oscillation index (SOI) phase model (Zhang and Casey
1992; Casey 1995). The tercile categorical hindcasts
cover the period from 1900 to 1995 and have been gen-
erated using cross validation to maintain statistical in-
dependence (Casey 1998).

In Fig. 1 sensitivity of the revised TSS scores to the
setting of different probability thresholds between fore-
casts and their random expectation is illustrated. These
results are consistent with Mason (1979), who noted
that if the climatological mean is used as the probability
threshold, the TSS score would be maximized. However,
very limited confidence can be attached when trans-
forming forecasts around their random expectations to
yes/no forecasts despite the fact that good scores may
be shown from the skill measurements. When the cat-
egory probability thresholds are set to 44.4% for yes

forecasts and 22.2% for no forecasts, the scores over
central, western, and southern Australian region are
much degraded. Figure 1 illustrates the advantage of
requiring a departure in probability space when con-
verting probabilistic forecasts to binary form even
though some information may be lost by the increase
of threshold. With a different probability threshold, it
can provide important information to users such as the
stability for the model forecasting skills and the model
real skills in terms of simple concepts as hits, misses,
and false alarms.

However, it should be noted that part of the infor-
mation from probability forecasts will be lost during the
transformation to binary form and its verification. When
probabilities from forecasts satisfy the threshold, the
transformation does not take account of the degree to
which they exceed the criterion in assigning them to
yes/no or nonapplicable classifications. The severity of
the errors between categories, that is, whether they are
one or two categories away, is not taken into account
in this method of scoring. Barnston (1992) has also
pointed out that scoring measurements based upon a
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contingency table will be more informative and valuable
if the severity of categorical errors is included.

3. LEPS, RPS, and ROC

The LEPS score was developed by Ward and Folland
(1991) and has been refined by Potts et al. (1996). It
evaluates model skill by penalizing errors in terms of
the distance between forecasts and observations in cu-
mulative probability space. It gives relatively more pen-
alty when forecasting events around average values, but
gives relatively higher scores and less penalty for fore-
casts of extreme events. Potts et al. (1996) showed that
when used for the verification of categorical forecasts
the LEPS scoring matrix is equitable in that the expected
score for a constant forecast of any category is the same
as the observational (climatological) distribution in each
category, although this characteristic is degraded for the
version that measures the percentage skills of forecasts
(Potts et al. 1996).

Another cumulative probability measure is the ranked
probability score (RPS; Wilks 1995). The RPS is es-
sentially an extension of the rms error measure to the
multicategorical forecast case. In the RPS, the squared
errors are computed with respect to the cumulative prob-
abilities of the forecasts and observations and the ob-
servation in binary 0/1 form. The RPS and LEPS scores
share the idea that the skill measurement should penalize
forecast errors in terms of the probability assigned to
the events. However, the LEPS scoring matrix is cal-
culated from the distance between the forecasts and ob-
servations in continuous cumulative probability space,
while the RPS calculations of the observed probability
is in 0/1 binary form depending on whether the obser-
vation or forecast values fall within the category or not.

The idea of ROC comes from quality control and
signal detection theory where the quality of performance
is assessed by the relation between hit and false alarm
rates as the decision criterion varies (Swets 1973; Egan
1975; Mason 1982). The graph of hit rates against false
alarm rates within a range of probability thresholds is
called the relative operating characteristics. From Table
1 the hit rate is defined as h 5 P{event is predict-
ed | event occurs} 5 A/(A 1 B), and the false alarm rate
f 5 P{event is predicted | event does not occur} 5 C/(C
1 D). Clearly, the hit and false alarm rates are closely
related to the threshold used in transforming from prob-
abilistic forecasts to yes/no forecasts. The hit rate can
be increased by reducing the probability threshold, but
at the same time the false alarm rate is increased. Sim-
ilarly, reducing the false alarm rate is at the expense of
reducing the hit rate. Hence a sequence of hit rate and
false alarm rate pairs can be generated by changing the
probability threshold through the range from 0 to 1.

The ROC curve has the following properties. (i) A
perfect model locates at the point (0, 1) in the coordi-
nates of false alarm rate and hit rate. In this case the
forecast model gives either 0% or 100% forecasts, and

no false forecasts from the model. The worst forecasting
model locates at the point (1, 0) in which the model
gives either 0% or 100% probabilistic forecasts but no
correct forecasts against observations. (ii) Constant val-
ue forecasts and random forecasts will locate on the
straight line between (0, 0) and (1, 1). (iii) The shape
of the ROC curve gives a total description of the skill
of the model forecasts at all probability thresholds. A
model with good skill will have its ROC curve lying
above and to the left of the (0, 0) to (1, 1) diagonal and
a model with bad skill compared with the random or
constant forecast will be seen below and to the right of
the diagonal. As the ROC score evaluates the model
forecasts by investigating the relative model perfor-
mance of hit and false alarm rates across the entire range
of probability thresholds, an integrated measurement of
the curve can provide a score that is independent of the
threshold probability level chosen to transform a prob-
ability forecast to binary form.

The first way to quantify the ROC is to calculate the
area beneath the ROC curve (Green and Swets 1966).
The larger the area, the better the model skill. If the
area is less than 0.5 of the whole (unit area), then the
model is less skillful than a random or constant forecast.
The other way to evaluate the model in terms of the
ROC is to transform the hit and false alarm rates under
the assumption that distributions of hit rate and false
alarm rate belong to a Gaussian distribution with equal
variance. A normal–normal transformation is done for
the hit and false alarm rates but at the same (sample)
variance. This linearizes the ROC curve and area cal-
culation is simpler.

In this study, we employ the first approach. We cal-
culated the ROC score from the categorical probability
forecasts by (i) setting up a range of probability thresh-
olds Pc from 0% to 100% in increments of 1% and
assigning the probabilistic forecasts to yes/no forecasts
if P . Pc, (ii) creating a 2 3 2 contingency table as in
Table 1 summed for all categories, (iii) calculating hit
and false alarm rates from the contingency table for
every probability threshold in 1% increments from 0%
to 100%, and (iv) ranking the pair of hit rate and false
alarm rate by ascending order of false alarm rates and
calculating the area by the numerical integration of the
ranked values using the trapezoidal rule.

Figure 2 is an example of the results from the ROC
score measurement that is calculated for the 3-month
rainfall probability hindcast data from the SOI phase.
Figure 2a shows the ROC curves over three locations
where model forecasts are of skill. In contrast, Fig. 2b
shows the ROC curves over another three locations
where the model skill is very limited. It should be point-
ed out that in this case if the forecasts from the model
were reversed, they would become skillful ‘‘forecasts.’’

Although the apparent advantage of the ROC score
is in the assessment of probability forecasts indepen-
dently of probability thresholds, it should be pointed out
that when it is applied to the verification of more than
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FIG. 2. ROC curve diagram showing the false alarm rate and hit
rate through the range of probability thresholds from 0% to 100% at
1% increments. (a) ROC curves when the model skill is better than
by chance; (b) ROC curves when the model skill is worse than chance.
The diagonal from (0, 0) to (1, 1) in both diagrams is the ROC curve
for climatological or random forecasts.

two category forecasts, it does not take account of the
severity of errors across the categories. For instance, if
tercile category one was observed, calculations of the
false alarm rate do not distinguish between the severity
of the error if terce two or terce three is forecast.

Clearly, from sections 2 and 3 we can see that dif-
ferent forecasting skill assessment approaches have their
advantages and disadvantages. Some may have solid
statistical bases but skill scores from those approaches
may be difficult to interpret. Simple approaches can
offer simple and straightforward skill scores but often
have drawbacks in a statistical sense. Therefore, it is
necessary to apply different skill assessment approaches
in model forecasting evaluation.

4. Comparison of skill scores
In the previous sections we have discussed different

approaches to the verification of categorical probability

forecasts. Each approach provides valuable information
about the skills of the probability model forecasts. The
revised TSS score verifies model probability forecasts
by converting them to yes/no binary form with a de-
parture in probability space. It describes model skill
based on a summary contingency table and results are
easily interpreted. The ROC score compensates for the
weakness of revised TSS in the sense that the revised
TSS score is dependent on the prescribed probability
threshold. ROC, on the other hand, evaluates the model
performance across the entire domain of probability
thresholds. Both skill measurements have the same un-
satisfactory feature that they ignore the severity of the
cross-category errors. Here we present results from both
approaches together with the results from the LEPS and
RPS for comparison and validation.

Figure 3 compares LEPS, ROC, TSS, and the RPS
for the 96 years of Australian winter rainfall tercile hind-
casts from an SOI phase model of Zhang and Casey
(1992). The TSS results are with 11% probability de-
parture. Overall, all scores show that the SOI phase
model demonstrates good skill in the rainfall forecasts
over the eastern part of the Australian continent during
the winter season. Among the four skill measurements,
the RPS shows the smallest areas of positive values
where the model shows better skill than random fore-
casting. The ROC score shows a very similar pattern as
the TSS score. Both of them have larger magnitudes of
positive skill than either the LEPS score or RPS. This
appears to be due to the fact that the ROC score and
revised TSS score do not distinguish the severity of
errors across categories while the LEPS score and the
RPS give different penalties in terms of the categorical
distance errors. In addition, the different magnitudes
indicate that the statistical significance may be different
in these skill scores and this will be discussed in the
next section.

Figure 4 shows the correlations between the LEPS
score and the TSS, RPS, and ROC scores calculated for
the hindcasts of July–August–September and Decem-
ber–January–February seasons over the Australian re-
gion. The four score measurements in this study are in
good agreement as seen in Fig. 3 and are highly cor-
related. The revised TSS and RPS scores have similar
magnitudes to the LEPS score. Among the four skill
scores, the ROC score has the largest magnitude. The
revised TSS and ROC scores produce more negative
skill scores than LEPS when the overall model skill is
poor. In addition, the RPS does have a significant bias
compared with LEPS. The differences between the
LEPS, TSS, and ROC scores are partly due to the fact
that the TSS and ROC scores do not take account of
the magnitudes of probability when they satisfy the
probability thresholds. In contrast, the RPS and the
LEPS scores preserve the magnitudes of the probabi-
listic forecasts in their calculations of the difference
between observations and forecasts and reward or pe-
nalize according to the severity of errors across the cat-
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FIG. 3. The LEPS, RPS, ROC, and revised TSS scores for the model hindcasts of Australian winter rainfall from 1900 to 1995.

egories. From Figs. 3 and 4 it is seen that the scales for
the skill scores are different for each of the four schemes
and the ROC score is generally larger than the other
scores. Thus, verifying model forecasts using different
skill scoring methods also requires a knowledge of the
statistical properties of the skill scores in order to es-
tablish the statistical significance of the skills and also
to compare skill scores from different scoring schemes.

We have devised a quasi-random ensemble experi-
ment to establish some statistical features of the differ-
ent skill scores used in this study. Instead of generating
random tercile categorical forecasts we keep the hind-
casts from the SOI model intact but reorder the hindcasts
in a cyclic way through the 96 yr of data for the period
from 1900 to 1995. We quasi-randomize the data by
reordering the observations 95 times by shifting the ob-
servations 1 yr ahead at a time and providing the last
point with the first at each iteration. This gives a total
number of 95 quasi-random observational time series,
all of which retain the autocorrelation characteristic of
the original series. Using these quasi-random observa-
tions to verify the forecasts, we obtain 95 skill scores
for each scoring scheme. To further enhance the ro-
bustness of the test, the 95 random skill scores at every

grid point over the Australian continent are combined,
giving a total number of 98 606 random skill score pop-
ulation.

Figure 5 illustrates the frequency distribution of the
four skill scores from the quasi-randomized data. All
the skill scores for the randomized data display ap-
proximately normal distribution characteristics. The
LEPS, revised TSS, and ROC scores all have their cen-
tral mean skill near zero, but the RPS consistently shows
a bias (and in all seasons) with a mean of about 25.1.
Such a negative value is related to the feature of RPS
as it penalizes forecast errors in terms of probability of
the forecasting event. This explains why the RPS con-
sistently shows less positive skill in Fig. 3. More in-
structively, results from Fig. 5 show that the standard
deviations of the skill score distributions are quite dif-
ferent. The LEPS score has the smallest standard de-
viation with a value of about 2.3, while the standard
deviation of the revised TSS score and the RPS are
around 4.2. The ROC score has the largest standard
deviation among the four skill scores with a value of
about 8.8. For a given skill score, the larger the standard
deviation, the less the statistical significance of that skill
score achieved by the model.
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FIG. 4. Scatter diagrams showing correlation between the LEPS
score and the other scores shown in Fig. 3.

FIG. 5. Statistical skill score distributions derived from a quasi-ran-
domized ensemble of hindcast data (see text).

As the distribution of skill scores has an approxi-
mately normal distribution, a significance level can be
attached to the skill scores. For example, if the LEPS
score from a model forecast is around 5.0, which is twice
as large as the standard deviation of the scores found
from the randomized hindcasts, we can state at the 95%
confidence level that the skill score is statistically sig-
nificant as there is only about a 5% probability that such

skill can be achieved from a random (but serially cor-
related) set of forecasts.

As a further illustration, Fig. 6 shows the areas of the
LEPS, ROC, and revised TSS skill scores of the July–
August–September hindcasts from the SOI phase model
where the areas of skill score value exceeding its two
standard deviations are shaded for comparison. As seen
earlier in Fig. 3, the spatial patterns of these statistically
significant skill scores are in good agreement. All the
skill score results indicate this model has significant
forecasting skills over the east and north of the Austra-
lian continent. However, the areas of positive skill
scores, which are statistically significant at the 95% con-
fidence level, are marginally larger in the LEPS score
than in the ROC and TSS scores. Despite the fact that
the random experiment may only partially reflect the
statistical properties of the skill scoring schemes ex-
amined in this study, these results highlight the impor-
tance of investigating the statistical features of differ-
ently formulated skill scoring schemes.

5. Discussion

a. Skill assessment and model development

It is generally recognized that when different predic-
tion techniques are available, optimal combination of
forecasts from those separate schemes provides higher
skill than that achieved by any of the individual models
(e.g., Fraedrich and Leslie 1987; Casey 1995). The
weights of model forecasts in the combination are cal-
culated by minimizing the mean-square errors. Casey
(1995) indeed showed that the mean-square errors
(mses) or half-Brier score (Wilks 1995) is reduced after
combination of two different forecasts.

However, it has been pointed out that mean-square
errors can be reduced by damping probability forecasts
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FIG. 6. LEPS, ROC, and TSS skill scores of the SOI phase model
hindcasts for 1900 to 1995. Areas where skill scores are statistically
significant at the 95% level are shaded.

FIG. 7. Comparison of LESP scores for SOI phase model (SOI)
hindcasts for 1900–95 Australian winter rainfall with those from the
combination of SOI phase model and a Darwin pressure phase model.

(Murphy 1988; Potts et al. 1996). Combining techniques
are in some sense damping the forecasts by introducing
other variables to explain the total variance; therefore,
the model skill may not be improved if other skill scores
are calculated. Figure 7 shows LEPS scores calculated
from the hindcasts of the SOI model and from optimal
combination of the SOI phase model with another sea-
sonal forecasting model that uses the Darwin surface
pressure as the predictor. Using the optimal combination
approach of Casey (1995), it was shown that mses are
reduced by combining forecasts, compared with the in-
dividual models. However, comparing Figs. 7a and 7b,
it is found that the positive LEPS scores are, in contrast,
degraded in the optimal combination hindcasts com-
pared with LEPS scores of the SOI phase model. This
degrading is seen over the east coastlines and over
southeast Australia regions. This is largely because
LEPS not only measures the difference between fore-
casts and observations in magnitudes, but also gives
higher scores and less penalty for forecasting rare
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events. Clearly, forecasts damped toward the climatol-
ogy from the optimal combination are not favored by
LEPS skill scoring and thus there is no significant im-
provement in forecasting skill. This is a clear example
demonstrating that the approach used in the model skill
evaluation could affect the model development and im-
provement, thus underlining the importance of applying
more than one skill assessment in practice.

b. Discussion

Mse scores can be evaluated using a binary repre-
sentation of the observations, assigning 0 for no and 1
for yes depending on whether the observation falls with-
in a given category or not. However, mean-square-error
measures of skill can have a number of drawbacks.
Barnston (1992) and Potts et al. (1996) have provided
examples showing that if mse is used as a skill mea-
surement, then this can be artificially improved by
damping the forecasts through linear combination with
a random variable, or equivalently, with the climato-
logical or observational distribution. This feature can
act as a disincentive to forecasting extreme values in
any scheme that is based purely on this measure as a
guide to performance. Schemes that produce forecasts
clustered about the climatological expectation will score
better on this measure than those that tend to forecast
more extreme departures. Also, mean-square-error
scores are not always appropriate for multiple category
forecasts because information about the way the prob-
ability distributions shift toward the extremes within a
particular category is lost (Stanski et al. 1989).

Assessment of skill by constructing contingency ta-
bles using yes/no binary forecast verification values has
been used for many years. However, there is continuing
debate on the strengths and weaknesses of these methods
(see, e.g., Woodcock 1976; Schaefer 1990; Wilks 1995)
as some of these skill scores have particular properties
that are designed for specific applications such as the
verification of rare events. This simplification inevitably
loses some information about the overall character of
the forecasts and can introduce deficiencies in the mea-
surement of skill.

Most, if not all, of these schemes have a number of
deficiencies when applied to multiple-category fore-
casts. Gandin and Murphy (1992) pointed out that many
skill scores used to evaluate categorical forecasts of dis-
crete variables are inequitable in the sense that constant
forecasting of events near the mean produces better
scores than constant forecasting of extremes. This is
because for more or less randomly distributed phenom-
ena there is a tendency to cluster about the mean, so
the likelihood of a forecast being correct when close to
the mean is higher than that for an extreme forecast.
This has led to the devising of so-called equitable scor-
ing matrices for categories, which penalize forecasts that
are close to the mean and reward those that are farther
toward the extremes. These depend on some assump-

tions about the underlying probability density structure.
Ward and Folland (1991) developed the LEPS score,
which uses the principle of the equitable scoring matrix.
Mason (1982) introduced the ROC score into the as-
sessment of meteorological forecasts. It is particularly
suitable for the assessment of probabilistic predictions
in that it is capable of measuring how much signal as
distinct from noise is included in the information pro-
vided, in terms of the likelihood ratio between success
and failure of the prediction.

In this paper our attention has been focused on the
verification of tercile categorical probability forecasts,
but we believe that a number of the concepts discussed
here can be generalized to multicategory forecasts. First
we have proposed an approach to evaluating model fore-
casts by converting probabilistic forecasts to binary yes/no
forecasts with departures in probability space and then using
a 3 3 2 contingency table to determine the model fore-
casting skills. We have revised the true success statistic
score to take account of forecasts that are not signifi-
cantly different from the random probability mean. The
sensitivity of the TSS score to the probability threshold
is discussed. This is of considerable value in the ap-
plication of probabilistic-type forecasts. The relative op-
erating characteristic score evaluates the model fore-
casting skills by investigating the hit and false alarm
rates for varying probability thresholds. A practical ap-
proach is established for the calculation of the ROC
score. As both the revised TSS and the ROC score do
not penalize the errors in terms of their severity between
each of the categories, the LEPS score and the ranked
probability score have also been calculated for the pur-
pose of intercomparison.

Model skills measured by the LEPS, ROC, TSS, and
RPS are compared using verifications of an Australian
seasonal rainfall forecast model. Overall similar distri-
bution patterns of model skill over the Australian region
are seen in the results from the four skill measurements.
Among the four skill scores, the ROC score has the
largest magnitudes and the RPS shows the smallest areas
of positive skill. The scores from all these measurements
are highly correlated but there is some bias between
them. We have discussed the importance of investigating
the statistical characteristics of any skill measurement
scheme. Results from a series of random experiments
conducted in this study suggest that the significance of
the skill scores is related to the variance of the skill
scores. Better skill score measurements should have a
smaller variation of skill scores for random forecast data
and this is an important issue that should be considered
when a comparison of different skill score measure-
ments is made.

The advantages and disadvantages of several different
skill scores are discussed. In this study, we have pre-
sented four different approaches to verifying probabi-
listic forecasts in forms often found in weather and cli-
mate predictions. The revised TSS score converts prob-
abilistic forecasts to yes/no forecasts with a departure
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from the mean in probability space and then measures
the skills from a modified contingency table that takes
account of the number of nonapplicable forecasts with
departures below the probability thresholds. The revised
TSS score is of particular value if a yes/no decision is
required from the probabilistic forecast at a prescribed
probability threshold. The ROC score can give infor-
mation about model performance at all threshold levels
compared with random forecasts. However, the false
alarm rates in the ROC score calculation are also equally
weighted, that is, there is no regard to the difference in
the size of the error between quantile categories. LEPS
assesses the model skills by measuring the distance be-
tween forecasts and observations in the cumulative
probability space. Nevertheless, it lacks information
about the significance of the model skill for yes/no de-
cision making. There are also some drawbacks as men-
tioned by Potts et al. (1996). Therefore different skill
scores may be expected from the same forecasts if the
skill score measures used in the assessment are different.

Skill scoring measurements have implications for the
development of forecast models. An example has been
shown in this study to demonstrate that improvements
of the forecasting model in terms of one skill score result
might not be seen if the model is verified by a different
skill measurement. Developing a skill scoring scheme
that overcomes the weakness of existing schemes often
inevitably introduces other problems as pointed out by
Potts et al. (1996) and no one standard scoring system
has yet been developed that is appropriate for all types
of forecasts. Considering the complexity of forecast ver-
ification, it is doubtful whether a universal scoring
scheme exists. Rather, it seems desirable that a number
of different scoring techniques should be applied in or-
der to obtain an objective assessment of any given fore-
cast scheme (Murphy 1991; Lee and Passner 1993; Hun-
trieser et al. 1997). Because of the complexity of ob-
jective scoring, it also appears there is no advantage in
doing category forecasts and then scoring with elaborate
methods to verify the forecasts, if no more useful in-
formation is conveyed to the user by presenting the
forecast information in multiple categories rather than
by the easily interpreted and easily scored probability
of exceeding the median.
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